Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Obwód trójkąta ABC wynosi 24 cm. Połączono środki boków tego trójkąta i otrzymano trójkąt DEF , którego obwód jest równy
A) 6 cm B) 8 cm C) 12 cm D) 18 cm

Liczby √ --√ --- √ --- 8, 50 , 72 są długościami trójkąta ABC . Trójkątem podobnym do trójkąta ABC jest trójkąt o bokach długości
A) √ -- √ --√ -- 2, 5, 6 B) 4, 25, 36 C) 8, 50, 72 D) 2, 5, 6

*Ukryj

Dany jest trójkąt o bokach długości  √ -- √ -- √ -- 2 5 ,3 5,4 5 . Trójkątem podobnym do tego trójkąta jest trójkąt, którego boki mają długości
A) 10, 15, 20 B) 20, 45, 80 C) √ -- 2 , √ -- 3 , √ -- 4 D) √ -- √ -- √ -- 5,2 5,3 5

Do trójkąta o bokach długości 6,9,12 jest podobny trójkąt o bokach
A) 9,12 ,1 5 B) √ --√ --√ --- 6, 9, 12 C) 6,8,4 D) 1, 1, 1 6 9 12

Boki trójkąta ABC mają długości √ ---√ ---√ --- 18 , 50, 72 . Trójkątem do niego podobnym jest trójkąt o bokach
A) 3, 5, 6 B) 9, 25, 36 C) 18, 50, 72 D) √ ---√ ---√ --- 20, 52, 7 4

Liczby √ ---√ --- √ ---- 27, 7 5, 108 są długościami trójkąta ABC . Trójkątem podobnym do trójkąta ABC jest trójkąt o bokach długości
A) √ -- √ --√ -- 2, 5, 6 B) 6, 10, 12 C) 8, 50, 72 D) 2, 5, 6

Dany jest trójkąt o bokach długości √3-2 2√-3- 3 ,3, 3 . Trójkątem podobnym do tego trójkąta jest trójkąt, którego boki mają długości
A) √ -- √ -- 3, 3, 2 3 B)  √ -- 1, 2 3, 2 C) √-2 2 2√-2 3 , 3, 3 D) 1 -1- 2,√ 3, 1

Środkiem okręgu opisanego na trójkącie jest punkt przecięcia się
A) dwusiecznych kątów trójkąta B) środkowych trójkąta
C) wysokości trójkąta D) symetralnych boków trójkąta

*Ukryj

Dla dowolnego trójkąta prawdziwe jest zdanie
A) Środek okręgu wpisanego w trójkąt to punkt przecięcia się środkowych trójkąta.
B) Środek okręgu wpisanego w trójkąt to punkt przecięcia się dwusiecznych kątów trójkąta
C) Środek okręgu opisanego na trójkącie to punkt przecięcia się dwusiecznych kątów trójkąta.
D) Środek okręgu opisanego na trójkącie to punkt przecięcia się wysokości trójkąta

Trójkąt ABC ma boki długości 4 cm, 13 cm, 15 cm oraz pole równe  2 24 cm . Najdłuższa wysokość trójkąta DEF podobnego do trójkąta ABC w skali 1:3 ma długość
A) 4 cm B) 16cm 13 C) 2 cm D) 16 15 cm

Który z narysowanych trójkątów jest podobny do trójkąta, w którym miary dwóch kątów wynoszą 55∘ i 65 ∘ ?


PIC


*Ukryj

Który z narysowanych trójkątów jest podobny do trójkąta, w którym miary dwóch kątów wynoszą 40∘ i 65 ∘ ?


PIC


Który z narysowanych trójkątów jest podobny do trójkąta, w którym miary dwóch kątów wynoszą 60∘ i 65 ∘ ?


PIC


Który z narysowanych trójkątów jest podobny do trójkąta, w którym miary dwóch kątów wynoszą 50∘ i 75 ∘ ?


PIC


Środkowe w trójkącie ABC przecinają się w punkcie P odległym od wierzchołka A o 6 cm. Wobec tego środkowa poprowadzona na bok BC ma długość
A) 12 cm B) 9 cm C) 15 cm D) 10 cm

*Ukryj

Środkowe w trójkącie ABC przecinają się w punkcie P , przy czym długość środkowej opuszczonej na bok BC ma długość 9 cm. Wobec tego długość odcinka AP wynosi
A) 6 cm B) 3 cm C) 2 cm D) 5 cm

Środkowe w trójkącie ABC przecinają się w punkcie P odległym od wierzchołka A o 6 cm. Środkowa opuszczona na bok BC przecina ten bok w punkcie D . Wobec tego długość odcinka PD wynosi
A) 1 cm B) 2 cm C) 3 cm D) 6 cm

Punkty D i E dzielą bok BC trójkąta ABC na trzy równe części (zobacz rysunek). Stosunek pól trójkątów ABC i ABD jest równy


PIC


A) 32 B) 23 C) 94 D) 4 9

Okrąg jest styczny do boku AB trójkąta ABC w punkcie D oraz przecina boki AC i BC tego trójkąta odpowiednio w punktach E ,F i G ,H (zobacz rysunek). Kat CHF ma miarę 67 ∘ .


PIC


Zaznaczony na rysunku kąt α ma miarę
A) 157 ∘ B) 23∘ C) 13 4∘ D) 11 3∘

Połączono środki boków trójkąta ABC otrzymując trójkąt KLM . O ile procent pole trójkąta KLM jest mniejsze od pola trójkąta ABC ?
A) 80% B) 75% C) 50% D) 25%

Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 1:4, mogą być równe
A) 9 i 36 B) 18 i 36 C) 9 i 144 D) 18 i 144

Pole trójkąta ABC przedstawionego na rysunku jest równe


PIC


A)  √ -- 1 + 3 B)  √ -- 3 2 C)  √ -- 2 + 2 D)  √ -- 2 3

Kąty między bokiem trójkąta ostrokątnego a wysokościami opuszczonymi z należących do tego boku wierzchołków mają miary 20∘ i 40∘ . Kąty tego trójkąta mają miary:
A) 80∘, 30∘, 70∘ B) 80∘, 40∘, 60∘ C)  ∘ ∘ ∘ 70 , 60 , 50 D)  ∘ ∘ ∘ 50 , 50 , 8 0

*Ukryj

Kąty między bokiem trójkąta ostrokątnego a wysokościami opuszczonymi z należących do tego boku wierzchołków mają miary 30∘ i 35∘ . Kąty tego trójkąta mają miary:
A) 65∘, 55∘, 60∘ B) 70∘, 50∘, 60∘ C)  ∘ ∘ ∘ 70 , 55 , 55 D)  ∘ ∘ ∘ 65 , 50 , 6 5

Oblicz długość odcinka AE wiedząc, że AB ∥ CD i |AB | = 6,|AC | = 4,|CD | = 8 .


PIC


A) |AE | = 2 B) |AE | = 4 C) |AE | = 6 D) |AE | = 1 2

*Ukryj

Odcinki AB i DE są równoległe. Długości odcinków CD , DE i AB są odpowiednio równe 2, 4 i 16.


PIC


Długość odcinka AD jest równa
A) 12 B) 8 C) 3 D) 6

Jeżeli odcinki AB i DC są równoległe, to długość odcinka AE (patrz rys.) jest równa


PIC


A) 9 B) 10 C) 11 D) 12

Oblicz długość odcinka AE wiedząc, że AB ∥ CD i |AB | = 8,|AC | = 3,|CD | = 9 .


PIC


A) |AE | = 2 4 B) |AE | = 2147 C) |AE | = 12 D) |AE | = 32

W trójkącie ABC punkt D leży na boku BC , a punkt E leży na boku AC . Odcinek DE jest równoległy do boku AB , a ponadto |AE | = |DE | = 4 , |AB | = 6 (zobacz rysunek).


PIC


Odcinek CE ma długość
A) 163 B) 83 C) 8 D) 6

Odcinki AB i DE są równoległe. Długości odcinków CD , DE i AB są odpowiednio równe 1, 3 i 9.


PIC


Długość odcinka AD jest równa
A) 2 B) 3 C) 5 D) 6

Odcinki AB i DE są równoległe. Długości odcinków CD , DE i AB są odpowiednio równe 2, 5 i 15.


PIC


Długość odcinka AD jest równa
A) 3 B) 4 C) 5 D) 6

Oblicz długość odcinka AE wiedząc, że AB ∥ CD i |AB | = 6,|AC | = 3,|CD | = 7 .


PIC


A) |AE | = 1 8 B) |AE | = 16 C) |AE | = 24 D) |AE | = 12

W trójkącie ABC punkt D leży na boku BC , a punkt E leży na boku AC . Odcinek DE jest równoległy do boku AB , a ponadto |BD | = |DE | = 6 , |AB | = 9 (zobacz rysunek).


PIC


Odcinek CD ma długość
A) 8 B) 4 C) 9 D) 12

Oblicz długość odcinka AE wiedząc, że AB ∥ CD i |AB | = 6,|AC | = 2,|CD | = 8 .


PIC


A) |AE | = 2 B) |AE | = 4 C) |AE | = 6 D) |AE | = 1 2

Punkt P jest punktem wspólnym środkowych AD i BE w trójkącie ABC . Wówczas odcinki AP i PD mogą mieć długości
A)  √ -- |AP | = 2, |PD | = √1- 2 B) |AP | = 3, |PD | = 6
C) |AP | = 9, |P D | = 3 D) |AP | = 3, |P D | = 9

W trójkącie zwiększono długość każdego boku o 20%. O ile procent wzrosło pole tego trójkąta?
A) 20% B) 40% C) 44% D) 400%

Pole trójkąta ABC wynosi  2 24 cm . Połączono środki boków tego trójkąta i otrzymano trójkąt DEF , którego pole jest równe
A) 6 cm 2 B) 8 cm 2 C) 12 cm 2 D) 18 cm 2

Sinusy dwóch kątów ostrych trójkąta są odpowiednio równe 17 20 i -9 10 . Jeżeli α jest miarą najmniejszego kąta tego trójkąta, to
A) 56∘ < α < 58∘ B) 58 ∘ < α < 60 ∘ C) 60∘ < α < 62∘ D) 64∘ < α < 66∘

Znajdź skalę podobieństwa trójkąta  ′ ′ ′ A B C do trójkąta ABC :


PIC


A) 19 B) 13 C) 3 D) 9

*Ukryj

Znajdź skalę podobieństwa trójkąta  ′ ′ ′ A B C do trójkąta ABC :


PIC


A) 13 B) 19 C) 3 D) 9

Odcinki AB i CD są równoległe. Długości odcinków AB , CD i AD są podane na rysunku.


PIC


Długość odcinka DE jest równa
A) 44 B) 40 C) 36 D) 15

*Ukryj

Odcinki AB i CD są równoległe i |AB | = 5, |AC | = 2, |CD | = 7 (zobacz rysunek). Długość odcinka AE jest równa


PIC


A) 170 B) 154 C) 3 D) 5

Odcinki AB i CD są równoległe i |AB | = 11, |AC | = 2, |CD | = 13 (zobacz rysunek). Długość odcinka AE jest równa


PIC


A) 2123 B) 2161 C) 11 D) 13

Odcinki AB i CD są równoległe. Długości odcinków AB , CD i AD są podane na rysunku.


PIC


Długość odcinka DE jest równa
A) 30 B) 33 C) 27 D) 12

Dany jest trójkąt ABC o kącie  ∘ 80 przy wierzchołku C . Kąt między dwusieczną tego kąta a wysokością poprowadzoną z wierzchołka C ma miarę 15 ∘ . Wynika stąd, że kąt ABC jest równy
A) 15∘ B) 7 5∘ C) 35∘ D)  ∘ 105

*Ukryj

Dany jest trójkąt ABC o kącie  ∘ 80 przy wierzchołku C . Kąt między dwusieczną tego kąta a wysokością poprowadzoną z wierzchołka C ma miarę 10 ∘ . Wynika stąd, że kąt ABC jest równy
A) 20∘ B) 4 0∘ C) 30∘ D)  ∘ 120

Strona 1 z 4>>>>