Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań

Dwusieczne czworokąta ABCD wpisanego w okrąg przecinają się w czterech różnych punktach: P,Q ,R ,S (zobacz rysunek).


PIC


Wykaż, że na czworokącie PQRS można opisać okrąg.

Ciąg (an) jest określony wzorem  n an = (− 1) ⋅(n − 5) dla każdej liczby naturalnej n ≥ 1 . Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Pierwszy wyraz ciągu (an ) jest dwa razy większy od trzeciego wyrazu tego ciągu. PF
Wszystkie wyrazy ciągu (an) są dodatnie. PF

Ciąg (x ,2x + 3,4x + 3) jest geometryczny. Pierwszy wyraz tego ciągu jest równy
A) − 4 B) 1 C) 0 D) − 1

Dany jest ostrosłup, którego podstawą jest kwadrat o boku 6. Jedna z krawędzi bocznych tego ostrosłupa ma długość 12 i jest prostopadła do płaszczyzny podstawy. Oblicz objętość tego ostrosłupa.

Jednym z miejsc zerowych funkcji kwadratowej f jest liczba (− 5) . Pierwsza współrzędna wierzchołka paraboli, będącej wykresem funkcji f , jest równa 3. Drugim miejscem zerowym funkcji f jest liczba
A) 11 B) 1 C) (− 1) D) (− 13)

Na rysunku przedstawiono geometryczną interpretację jednego z niżej zapisanych układów równań.


PIC


Wskaż ten układ, którego geometryczną interpretację przedstawiono na rysunku.
A) { y = x+ 1 y = − 2x + 4 B) { y = x − 1 y = 2x + 4 C) { y = x− 1 y = − 2x+ 4 D) { y = x + 1 y = 2x + 4

Przyprostokątna AC trójkąta prostokątnego ABC ma długość 6, a wysokość CD dzieli go na dwa takie trójkąty ADC i CDB , że pole trójkąta ADC jest 4 razy większe od pola trójkąta CDB (zobacz rysunek).


PIC


Przyprostokątna BC trójkąta prostokątnego ABC jest równa
A) 1,5 B) 2 C) 2,5 D) 3

W trójkącie ABC bok AB jest 3 razy dłuższy od boku AC , a długość boku BC stanowi 45 długości boku AB . Oblicz cosinus najmniejszego kąta trójkąta ABC .

Pewien turysta pokonał trasę 112 km, przechodząc każdego dnia tę samą liczbę kilometrów. Gdyby mógł przeznaczyć na tę wędrówkę o 3 dni więcej, to w ciągu każdego dnia mógłby przechodzić o 12 km mniej. Oblicz, ile kilometrów dziennie przechodził ten turysta.

Długości boków czworokąta ABCD są równe: |AB | = 2, |BC | = 3 , |CD | = 4, |DA | = 5 . Na czworokącie ABCD opisano okrąg. Oblicz długość przekątnej AC tego czworokąta.

Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y takich, że x ⁄= y , spełniona jest nierówność

x4 + y4 > xy (x 2 + y2).

W ciągu arytmetycznym (an) , określonym dla n ≥ 1 , dane są dwa wyrazy: a2 = 1 1 i a4 = 7 . Suma czterech początkowych wyrazów tego ciągu jest równa
A) 36 B) 40 C) 13 D) 20

Dany jest ciąg geometryczny (an) określony wzorem  ( 1 )n an = 2x−-371 dla n ≥ 1 . Wszystkie wyrazy tego ciągu są dodatnie. Wyznacz najmniejszą liczbę całkowitą x , dla której nieskończony szereg a + a + a + ... 1 2 3 jest zbieżny.

W urnie znajduje się 16 kul, które mogą się różnić wyłącznie kolorem. Wśród nich jest 10 kul białych i 6 kul czarnych. Z tej urny losujemy dwukrotnie jedną kulę bez zwracania. Oblicz prawdopodobieństwo wylosowania dwóch kul białych.

Strona 9 z 111
spinner