Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Równania/Wielomianowe

Wyszukiwanie zadań

Wykaż, że równanie  4 3 2 x − 7x + 9x + 8x − 2 = 0 ma w przedziale (− 2,2 ) co najmniej dwa różne rozwiązania.

Wiedząc, że suma kwadratów pierwiastków równania

 3 2 mx + 6mx + (8m − 5 )x − 10 = 0

jest równa 30, wyznacz m .

Ukryj Podobne zadania

Sprawdź dla jakiego m ∈ R pierwiastki wielomianu  3 2 W (x ) = x − (m + 1)x + (m − 3)x + 3 tworzą ciąg arytmetyczny?

Wyznacz wszystkie wartości parametru m , dla których jedynym rozwiązaniem rzeczywistym równania x3 + m 3x2 − m 2x− 1 = 0 jest liczba 1.

Wykaż, że jeżeli x0 jest rozwiązaniem równania  5 4 2 2x + 5x + 5x + 20x + 3 = 0 , to x0 ∈ (− 1,0) .

Ukryj Podobne zadania
Ukryj Podobne zadania

Dany jest wielomian  3 2 W (x) = x + 2x − 9x − 18 .

  • Wyznacz pierwiastki tego wielomianu.
  • Sprawdź, czy wielomiany W (x ) i P(x ) = (x+ 2)(x2 − 2x + 4) + (x + 2)(2x − 1 3) są równe.
  • Uzasadnij, że jeśli  √ --- x > 10 , to  3 2 x + 2x − 9x − 18 > 0 .

Rozważmy równanie  4 √ -- 2 9x + 2− 5x − 1 = 0 .

  • Uzasadnij, że równanie to ma 4 pierwiastki.
  • Oblicz sumę szóstych potęg wszystkich pierwiastków tego równania.

Liczby − 7 ,− 1 ,5 ,11 są miejscami zerowymi wielomianu czwartego stopnia W (x) . Wykaż, że dla dowolnej liczby rzeczywistej x spełniona jest równość W (2− x ) = W (2 + x) .

Ukryj Podobne zadania

Uzasadnij, że jeżeli współczynniki wielomianu W (x ) są liczbami całkowitymi i W (1) jest liczbą nieparzystą, to liczba nieparzysta nie jest pierwiastkiem wielomianu W (x) .

Pierwiastkiem wielomianu  3 W (x ) = 2x + mx − 5 jest liczba -2. Wyznacz parametr m .

Ukryj Podobne zadania

Pierwiastkiem wielomianu  3 2 W (x ) = x − mx − 3x+ m jest liczba − 2 . Wyznacz parametr m .

Dane są liczby wymierne a ⁄= 0, b i k > 0 takie, że liczby  √ -- x1 = 1 − k i  √ -- x2 = 1+ k są pierwiastkami równania ax 3 + bx 2 + cx+ d = 0 . Wykaż, że c i d są liczbami wymiernymi.

Dla jakich wartości parametru m równanie  5 3 2 4x + 4(1 − m )x + (m − 4)x = 0 ma dokładnie trzy różne rozwiązania?

Dla jakich wartości parametru m równanie  2 2 (x − m ) [m(x − m ) − m − 1]+ 1 = 0 ma więcej pierwiastków dodatnich niż ujemnych?

Dany jest wielomian  3 2 2 2 W (x) = x − a x + x − a , gdzie |a| ⁄= 1 .

  • Oblicz sumę pierwiastków tego wielomianu.
  • Wyznacz wartość parametru a , dla której suma kwadratów pierwiastków wielomianu W (x) jest możliwie najmniejsza.

Dany jest wielomian  3 2 Q(x ) = 2x − 3x − 3x + d .

  • Liczba 1 jest pierwiastkiem tego wielomianu. Oblicz d .
  • Dla d = 2 przedstaw wielomian Q w postaci iloczynu wielomianów stopnia pierwszego.

Wyznacz współczynniki c i d wielomianu  3 2 W (x ) = x − 4x + cx + d wiedząc, że liczba 1 jest dwukrotnym pierwiastkiem wielomianu W (x) .

Strona 2 z 7
spinner