Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Wykaż, że istnieje liczba dodatnia a , dla której  2 1 313√2- a + a < 20 .

Udowodnij, że jeżeli a ≥ b > 0 to (a+b-) √ --- (a−b-)2- 2 − ab ≥ 8a .

Wykaż, że dla dowolnych dodatnich liczb x,y ,z spełniona jest nierówność

 ( 1 1 1 ) (x + y + z) -+ --+ -- ≥ 9 x y z

Uzasadnij, że jeżeli a,b,c,d są liczbami dodatnimi to

 √ ----- (a + b)(c + d) ≥ 4 abcd.

Udowodnij, że dla każdej liczby rzeczywistej x i każdej liczby rzeczywistej m prawdziwa jest nierówność 20x2 − 24mx + 1 8m 2 ≥ 4x+ 12m − 5 .

*Ukryj

Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y prawdziwa jest nierówność x2 + y2 + 3x − xy + 5 ≥ 0 .

Udowodnij, że dla każdej liczby rzeczywistej x i każdej liczby rzeczywistej m prawdziwa jest nierówność 18x2 − 36mx + 2 2m 2 ≥ 24x − 12m − 17 .

Udowodnij, że dla każdej liczby rzeczywistej x i każdej liczby rzeczywistej m prawdziwa jest nierówność 8x2 − 4mx + 2m 2 ≥ 12x + 6m − 18 .

Wykaż, że dla dowolnych liczb rzeczywistych x i y takich, że (x − 1)2 + (y + 2)2 = 2 , prawdziwa jest nierówność y + 1 ≤ x .

Wykaż, że dla dowolnej liczby rzeczywistej M nierówność

 2 2 M + log (4x + 12x + 9) < log (4x + 16x + 15)

ma przynajmniej jedno rozwiązanie w przedziale ( 3 ) − 2,0 .

Wykaż, że dla dowolnych liczb rzeczywistych x,y prawdziwa jest nierówność

x2 + 2x2y 2 + y 2 ≥ 2(x2y + xy2).

Wykaż, że dla dowolnych liczb rzeczywistych a,b prawdziwa jest nierówność

(2ac + bd )(ac+ 2bd ) ≥ 9abcd

Udowodnij, że jeżeli a > 0 to dla wszystkich x ∈ R spełniona jest nierówność ax + a−x ≥ 2 .

Wykaż, że dla wszystkich dodatnich liczb rzeczywistych a,b prawdziwa jest nierówność  2 2 ba-+ ab-≥ a+ b .

Wykaż, że dla dowolnych różnych liczb rzeczywistych a,b prawdziwa jest nierówność

 ∘ -------- a+--b- a2 +-b2 2 < 2 .
*Ukryj

Wykaż, że jeśli x,y ∈ R to ∘ x2+y2- x+y --2-- ≥ --2- .

Uzasadnij, że jeżeli a,b,c,d są liczbami dodatnimi to

∘ -------------- √ --- √ --- (a+ c)(b+ d ) ≥ ab+ cd.
*Ukryj

Wykaż, że dla a,b,c,d > 0 prawdziwa jest nierówność √ ------√ ----- √ --- √ --- a+ b⋅ c + d ≥ ac+ bd .

Udowodnij, że dla dowolnych liczb nieujemnych a i b prawdziwa jest nierówność

 √ ---- 3a+--3b-≥ 2ab . 4
*Ukryj

Wykaż, że dla dowolnej liczby dodatniej x prawdziwa jest nierówność

 2 √ -- x + 2x > 2x x.

Udowodnij, że dla każdych dwóch liczb rzeczywistych x ≥ 1 i y ≥ 1 prawdziwa jest nierówność

(x+ y)(x2 − xy + y2 + 3) ≥ 2(x 2 + xy + y2 + 1).
*Ukryj

Udowodnij, że dla każdych dwóch liczb rzeczywistych x ≥ 1 i y ≥ 1 prawdziwa jest nierówność

x (x2 − 2x + 3)+ y(y2 − 2y + 3) ≥ 2xy + 2.

Wykaż, że dla wszystkich liczb rzeczywistych x,y prawdziwa jest nierówność x 6 + y6 ≥ x4y2 + x2y4 .

Udowodnij, że dla dowolnych liczb rzeczywistych x,y,z takich, że x ≥ y ≥ z , prawdziwa jest nierówność

x2z+ y2x + z2y ≤ x 2y + y 2z+ z 2x .

Możesz skorzystać z tożsamości

(x − y)(y− z)(z− x) = xy2 + yz 2 + zx 2 − xz 2 − yx 2 − zy2.

Wykaż, że dla każdych liczb rzeczywistych x oraz a prawdziwa jest nierówność

(x+ 2a)2 ≥ 8ax .
*Ukryj

Wykaż, że dla dowolnych różnych liczb rzeczywistych a i b prawdziwa jest nierówność

a(a + b)+ b2 > 3ab.

Wykaż, że dla dowolnych liczb rzeczywistych a i b prawdziwa jest nierówność

4a (a+ b)+ b 2 ≥ 8ab.

Wykaż, że dla dowolnej liczby całkowitej k prawdziwa jest nierówność 9k2 + 9k + 2 > 0 .

Udowodnij, że dla dowolnych różnych liczb rzeczywistych x,y prawdziwa jest nierówność

x2y2 + 2x 2 + 2y 2 − 8xy + 4 > 0.
*Ukryj

Udowodnij, że dla dowolnych różnych liczb rzeczywistych x,y prawdziwa jest nierówność

x4 − 8xy + 4y2 + 4 > 0.

Udowodnij, że dla dowolnych różnych liczb rzeczywistych x,y prawdziwa jest nierówność

x 2y2 + 3x2 + 3y2 − 12xy + 9 > 0.
Strona 1 z 5>>>>