Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Trójkąt

Wyszukiwanie zadań

Dany jest trójkąt równoramienny ABC , w którym |AB | = |AC | i |BC | = 10 . Na boku AC wybrano punkt D w ten sposób, że |∡CBD | = |∡BAC | = α oraz |AD | = 6193 . Oblicz sin α .

Stosunek pól dwóch trójkątów podobnych jest równy 4, a suma ich obwodów 12. Wyznacz obwód każdego z tych trójkątów.

Ukryj Podobne zadania

Stosunek pól dwóch trójkątów podobnych jest równy 4, a suma ich obwodów 18. Wyznacz obwód każdego z tych trójkątów.

Dany jest trójkąt ABC , w którym |∡CAB | = α i |∡ABC | = β (zobacz rysunek). Na bokach BC , AC i AB tego trójkąta wybrano odpowiednio punkty D , E i F w taki sposób, że |AE | = |AF | , |BD | = |BF | i |CD | = |CE | . Oblicz miary kątów trójkąta DEF .


PIC


W trójkącie prostokątnym ABC punkt M leży na przeciwprostokątnej BC . Z punktu M poprowadzono odcinki DM i EM prostopadłe odpowiednio do przyprostokątnych AB i AC (rysunek).


PIC


Udowodnij, że

|DM--| + |EM--|= 1. |AC | |AB |
Ukryj Podobne zadania

Trójkąt ABC jest prostokątny. Z punktu K należącego do przeciwprostokątnej AB poprowadzono odcinki KM oraz KL prostopadłe odpowiednio do przyprostokątnych BC oraz AC (rysunek).


PIC


Wykaż, że

|KM--|+ |KL-|-= 1. |AC | |BC |

Na zewnątrz równoramiennego trójkąta prostokątnego zbudowano kwadraty – jeden na przyprostokątnej, a drugi na przeciwprostokątnej. Wykaż, że przeciwprostokątna dzieli odcinek łączący środki kwadratów na dwie równe części.


PIC


Wysokość trójkąta CD ma długość 4 i dzieli bok AB na odcinki, z których krótszy AD ma długość 2, a kąt ACB na kąty, których stosunek miar jest równy 1:2. Oblicz długość boku BC tego trójkąta.

Wykaż, że jeżeli a,b,c są długościami boków trójkąta leżącymi naprzeciwko odpowiednio kątów o miarach α ≤ β ≤ γ to a ≤ b ≤ c .

Trójkąt prostokątny ma boki długości 2x + 2,2x + 3,x . Wyznacz x oraz promień okręgu wpisanego w ten trójkąt.

Dane są dwa boki trójkąta:  √ --- √ --- a = 75 , b = 2 7 . Jaką długość może przyjmować trzeci bok trójkąta?

Każdy kąt trójkąta ABC ma miarę mniejszą niż  ∘ 120 . Udowodnij, że wewnątrz trójkąta ABC istnieje punkt P taki, że

|∡AP B| = |∡BP C| = |∡CPA | = 120∘.

Pole trójkąta ostrokątnego o bokach 40 i 29 jest równe 420. Oblicz długość promienia okręgu wpisanego w ten trójkąt.

W trójkącie ABC środkowa AD jest prostopadła do boku AC . Kąt BAC ma miarę 120∘ oraz |AB | = 2|AC | = 2a . Oblicz długość odcinka AD .

Dwa boki trójkąta ostrokątnego wpisanego w okrąg o promieniu R mają długości 32R i  √ -- R 3 . Wykaż, że długość trzeciego boku wynosi  --- R-(3+ √ 21) 4 .

Ukryj Podobne zadania

Trzy cięciwy okręgu o promieniu r tworzą trójkąt wpisany w ten okrąg. Dwie najkrótsze z tych cięciw mają długości 12r i √ -- r 3 . Wykaż, że trzecia cięciwa ma długość  - 1+-3√5 4 r .

Pole trójkąta równoramiennego jest równe 25. Oblicz długość promienia okręgu wpisanego w trójkąt wiedząc, że ramię jest dwa razy dłuższe od podstawy.

Wykaż, że jeżeli a,b,c są długościami boków trójkąta to  2 2 1 2 a + b > 2c .

Ukryj Podobne zadania

Na bokach trójkąta zbudowano kwadraty o polach P 1,P 2 i P3 (zobacz rysunek)


PIC


Wykaż, że P 1 + P 2 > 12P3 .

Wyznacz długość przeciwprostokątnej oraz miary kątów trójkąta prostokątnego, którego przyprostokątne mają długości  √ -- √ -- √ -- √ -- a = 6+ 2, b = 6− 2 .

Trójkąt podzielono odcinkami AD ,CE i DE na 5 trójkątów, przy czym |AE | : |EB | = 2 : 1 .


PIC


Korzystając z podanych pól trzech z tych trójkątów, wyznacz pole trójkąta DEB .

Podstawa trójkąta równoramiennego ma długość 4. Środek okręgu opisanego na tym trójkącie dzieli jedną z wysokości trójkąta na odcinki, których stosunek długości wynosi 3:5. Oblicz długość ramienia trójkąta.

Przez środek D przyprostokątnej BC trójkąta prostokątnego ABC poprowadzono prostą prostopadłą do przeciwprostokątnej AB . Prosta ta przecina proste AB i AC odpowiednio w punktach M i N . Wykaż, że |MD-| |AC|2 |DN | = |AB|2 .


PIC


Wyznacz długości boków oraz miary kątów trójkąta prostokątnego ABC , jeżeli  √ -- a = 2− 2 i  √ -- √ -- b = 2 3 − 6 .


PIC


Strona 17 z 24
spinner