Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Trójkąt

Wyszukiwanie zadań

Ramię trójkąta równoramiennego jest dwa razy dłuższe od podstawy. Wyznacz obwód trójkąta, jeśli środkowa poprowadzona do ramienia ma długość d .

Podstawa trójkąta równoramiennego ma długość 10, a cosinus jednego z jego kątów jest równy − 419 . Oblicz pole tego trójkąta.

W trójkącie równoramiennym ramię jest 2 razy dłuższe od podstawy. Suma długości promieni okręgu wpisanego i opisanego na tym trójkącie równa się 11. Oblicz długość podstawy trójkąta.

Długości dwóch boków trójkąta są równe 1 i 4, a miara kąta zawartego między nimi wynosi 6 0∘ .

  • Oblicz pole tego trójkąta.
  • Oblicz promień okręgu opisanego na tym trójkącie.
  • Oblicz promień okręgu wpisanego w ten trójkąt.

Wykaż, że jeżeli pole trójkąta prostokątnego jest równe S , to długość jego przeciwprostokątnej jest nie mniejsza niż  √ -- 2 S .

Dwusieczna kąta ostrego ABC przecina przyprostokątną AC trójkąta prostokątnego ABC w punkcie D .


PIC


Udowodnij, że jeżeli |AD | = |BD | , to |CD | = 12 ⋅ |BD | .

Ukryj Podobne zadania

Dwusieczna kąta ostrego ACB przecina przyprostokątną AB trójkąta prostokątnego ABC w punkcie D .


PIC


Udowodnij, że jeżeli |AD | = 12 ⋅|CD | , to |BD | = |CD | .

Styczna w punkcie A do okręgu opisanego na trójkącie ABC przecina prostą BC w punkcie E . Niech D będzie punktem przecięcia dwusiecznej kąta A z prostą BC . Udowodnić, że AE = ED .

Dany jest trójkąt równoramienny ABC , w którym podstawa AB ma długość 32, a każde z ramion AC i BC ma długość równą 34. Punkt D jest środkiem ramienia BC (zobacz rysunek).


PIC


Oblicz długość odcinka AD .

Oblicz długości boków trójkąta prostokątnego ABC ( ∘ ∡C = 90 ) jeżeli tg ∡A = 2 i AC = 6 .

W trójkąt równoboczny wpisane są 3 koła o równych promieniach, przy czym każde koło jest styczne do dwóch boków trójkąta oraz do dwóch pozostałych kół. Oblicz stosunek sumy pól tych kół do pola trójkąta.

W trójkącie ABC , o bokach długości a,b ,c , połączono odcinkiem wierzchołek A z punktem E na boku BC takim, że BE = p i EC = q . Uzasadnij, że jeżeli d = AE , to a(d2 + pq) = b2p + c2q (twierdzenie Stewarta).

W okrąg wpisano trójkąt ABC , w którym  ∘ |∡A | = 50 i  ∘ |∡B | = 70 . Przez wierzchołek kąta C poprowadzono styczną do okręgu, przecinającą przedłużenie boku AB w punkcie D . Oblicz miary kątów trójkąta BCD .

Wyznacz długości boków trójkąta prostokątnego, w którym długość przyprostokątnej wynosi 12 cm, a kąt do niej przyległy ma miarę 40∘ . Wynik podaj z dokładnością do 0,1 cm.

W trójkącie ABC wysokość CD dzieli bok AB na odcinki długości |AD | = 6 cm i DB = 16 cm . Bok BC ma 20 cm długości. Poprowadzono symetralną boku AB . Wyznacz długości odcinków, na jakie symetralna ta podzieliła bok BC .

Ukryj Podobne zadania

W trójkącie ABC wysokość CD dzieli bok AB na odcinki długości |AD | = 4 cm i DB = 10 cm . Bok BC ma 16 cm długości. Poprowadzono symetralną boku AB . Wyznacz długości odcinków, na jakie symetralna ta podzieliła bok BC .

Oblicz długość promienia okręgu wpisanego w trójkąt prostokątny, którego kąt ostry ma miarę 45∘ , a długość przeciwprostokątnej jest równa 4.

W trójkącie ABC boki AC i BC są równe. Okrąg, którego średnicą jest wysokość CD trójkąta przecina boki trójkąta w punktach dzielących te boki w stosunku 5:3 licząc od wierzchołka C . Oblicz pole trójkąta ABC , jeżeli |CD | = 1 0 .

Podstawa trójkąta równoramiennego ma miarę 4 cm, a kąt przy niej  ∘ 30 . Oblicz pole i obwód trójkąta.

W trójkąt równoramienny o podstawie 12 cm i wysokości 8 cm wpisano okrąg. Oblicz promień tego okręgu.

Ukryj Podobne zadania

W trójkąt równoramienny o podstawie 24 cm i wysokości 5 cm wpisano okrąg. Oblicz promień tego okręgu.

Dwusieczna kąta prostego trójkąta prostokątnego dzieli przeciwprostokątną na odcinki, o długościach a i b . Oblicz długości przyprostokątnych tego trójkąta.

W trójkącie ABC bok BC ma długość 24 cm. Oblicz obwód tego trójkąta, wiedząc, że miara kąta przy wierzchołku B jest równa 4 5∘ , a miara kąta przy wierzchołku A jest równa 60∘ .

Ukryj Podobne zadania

W trójkącie ABC bok BC ma długość 12 cm. Oblicz obwód tego trójkąta, wiedząc, że miara kąta przy wierzchołku B jest równa 4 5∘ , a miara kąta przy wierzchołku A jest równa 30∘ .

Strona 18 z 24
spinner