Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria/Sześcian

Wyszukiwanie zadań

Krawędź sześcianu ma długość a . Oblicz pole przekroju tego sześcianu płaszczyzną przechodzącą przez przekątną podstawy i środki dwóch kolejnych krawędzi górnej podstawy.

W sześcian o krawędzi 4 wpisano kulę styczną do trzech ścian sześcianu oraz przechodzącą przez środek sześcianu. Oblicz promień tej kuli.

Krawędź sześcianu jest o 4 krótsza od jego przekątnej. Oblicz pole powierzchni całkowitej tego sześcianu.

Przekątna sześcianu ma długość 6. Oblicz objętość tego sześcianu.


PIC


Sześcian przecięto płaszczyzną przechodzącą przez przekątną podstawy. Płaszczyzna ta tworzy z podstawą kąt α . Dla jakich wartości cos α otrzymany przekrój jest trójkątem?

Punkty K ,L i M są środkami krawędzi BC ,GH i AE sześcianu ABCDEF GH o krawędzi długości 1 (zobacz rysunek). Oblicz pole trójkąta KLM .


PIC


Ukryj Podobne zadania

Na krawędziach sześcianu ABCDEF GH zaznaczono punkty K , L, M tak, że każdy z nich jest środkiem odpowiedniej krawędzi (patrz rysunek). Oblicz pole trójkąta KLM , jeśli krawędź sześcianu ma długość równą 4.


PIC


Na krawędziach sześcianu ABCDEF GH zaznaczono punkty K , L, M tak, że każdy z nich jest środkiem odpowiedniej krawędzi (patrz rysunek). Oblicz pole trójkąta KLM , jeśli krawędź sześcianu ma długość równą 2.


PIC


Punkty K ,L i M są środkami krawędzi AB ,CG i EH sześcianu ABCDEF GH o krawędzi długości 1 (zobacz rysunek). Oblicz pole trójkąta KLM .


PIC


Oblicz sinus kąta między przekątną sześcianu a jego płaszczyzną podstawy.

W narysowanym obok sześcianie krawędź ma długość a . Oblicz odległość wierzchołka A od płaszczyzny przechodzącej przez wierzchołki B, C i D .


PIC


Punkty K i L są środkami odpowiednio podstawy ABCD i krawędzi F G sześcianu ABCDEF GH . Suma kwadratów długości odcinków HK i BL jest równa 33. Oblicz pole powierzchni całkowitej sześcianu.


PIC


Ukryj Podobne zadania

Punkty K i L są środkami odpowiednio podstawy ABCD i krawędzi F G sześcianu ABCDEF GH . Suma kwadratów długości odcinków HK i BL jest równa 44. Oblicz objętość tego sześcianu.


PIC


Sześcian o krawędzi a przecięto płaszczyzną przechodzącą przez przekątną podstawy, która jest nachylona do płaszczyzny podstawy pod kątem 30 ∘ . Oblicz pole powstałego przekroju.

Z jednakowych sześciennych kostek, których krawędź ma długość 1, sklejono bryłę przedstawioną na rysunku.


PIC


Ile kostek należy dokleić do tej bryły, aby otrzymać wypełniony kostkami sześcian?

Przez środki trzech różnych krawędzi sześcianu ABCDA 1B1C 1D1 wychodzących z wierzchołka B poprowadzono płaszczyznę, która wyznaczyła przekrój bryły – trójkąt KLM . Oblicz odległość wierzchołka B od tego przekroju, jeżeli wiadomo, że długość krawędzi sześcianu wynosi 8.


ZINFO-FIGURE


Narysuj przekrój równoległościanu płaszczyzną PQR .


PIC


Na narysowanej poniżej siatce sześcianu zaznaczono trzy środki ścian sześcianu.


PIC


  • Zaznacz na powierzchni sześcianu trzy punkty P,Q ,R odpowiadające środkom ścian wskazanym na jego siatce.
  • Wiedząc, że krawędź sześcianu ma długość 1, oblicz pole trójkąta PQR .

Płaszczyzna p jest styczna do kuli wpisanej w sześcian  ′ ′ ′ ′ ABCDA B C D o krawędzi długości 2a oraz przecina krawędzie AB , AD i AA ′ w takich punktach E ,F i G odpowiednio, że AE = AF = AG = x . Wykonaj odpowiedni rysunek i wyznacz x .


PIC


Oblicz odległość środka ściany sześcianu o krawędzi długości a od przekątnej tego sześcianu.

Ukryj Podobne zadania

Dany jest sześcian ABCDEF GH o krawędzi długości 6. Punkt S jest punktem przecięcia przekątnych AH i DE ściany bocznej ADHE (zobacz rysunek).


ZINFO-FIGURE


Oblicz wysokość trójkąta SBH poprowadzoną z punktu S na bok BH tego trójkąta.

Dany jest sześcian ABCDEF GH o krawędzi długości 3. Punkt S jest punktem przecięcia przekątnych AH i DE ściany bocznej ADHE (zobacz rysunek).


ZINFO-FIGURE


Oblicz wysokość trójkąta BSG poprowadzoną z punktu B na bok SG tego trójkąta.

Wykaż, że objętość sześcianu jest sześć razy większa od objętości ośmiościanu foremnego, wyznaczonego przez środki ścian tego sześcianu.

Sześcian ABCDKLMN przecięto płaszczyzną przechodzącą przez przekątną BD podstawy, która jest nachylona do płaszczyzny podstawy pod kątem α takim, że tg α = 43 (zobacz rysunek).


PIC


Odległość wierzchołka C od płaszczyzny tego przekroju jest równa 6. Oblicz objętość sześcianu ABCDKLMN .

Dany jest sześcian ABCDEF GH o krawędzi długości 2. Punkt P jest środkiem krawędzi BC . Płaszczyzna AHP przecina krawędź CG w punkcie R (zobacz rysunek). Oblicz pole przekroju tego sześcianu płaszczyzną przechodzącą przez punkty A ,H ,R i P .


PIC


Jacek bawi się sześciennymi klockami o krawędzi 2 cm. Zbudował z nich jeden duży sześcian o krawędzi 8 cm i wykorzystał do tego wszystkie swoje klocki. Następnie zburzył budowlę i ułożył z tych klocków drugą bryłę – graniastosłup prawidłowy czworokątny. Wtedy okazało się, że został mu dokładnie jeden klocek, którego nie było gdzie dołożyć. Oblicz stosunek pola powierzchni całkowitej pierwszej ułożonej bryły do pola powierzchni całkowitej drugiej bryły i wynik podaj w postaci ułamka nieskracalnego.

Ukryj Podobne zadania

Ania bawi się sześciennymi klockami o krawędzi 2 cm i buduje z nich bryły w kształcie prostokątów (prostopadłościanów o wysokości 1 klocka) w sposób przedstawiony na poniższym rysunku.


PIC


Najpierw Ania zbudowała z klocków pełen kwadrat o krawędzi 36 cm i wykorzystała do tego wszystkie swoje klocki. Następnie zburzyła tę budowlę i ułożyła z tych klocków prostokąt. Wtedy okazało się, że został jej dokładnie jeden klocek, którego nie było gdzie dołożyć. Oblicz stosunek pola powierzchni całkowitej pierwszej z ułożonych figur do pola powierzchni całkowitej drugiej figury.

Strona 2 z 2
spinner