Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria

Wyszukiwanie zadań

W trójkąt prostokątny o przyprostokątnych o długościach 2 i 4 wpisano prostokąt w ten sposób, że dwa jego boki leżą na przyprostokątnych trójkąta, a jeden z wierzchołków prostokąta leży na przeciwprostokątnej trójkąta. Prostokąt ten obraca się dookoła prostej, zawierającej dłuższą przyprostokątną trójkąta, tworząc walec. Oblicz, który z walców, otrzymanych w powyższy sposób, posiada największe pole powierzchni bocznej i oblicz jego objętość.

Dany jest prostokątny arkusz kartonu o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe naroża (zobacz rysunek).


ZINFO-FIGURE


Następnie zagięto karton wzdłuż linii przerywanych, tworząc w ten sposób prostopadłościenne pudełko (bez przykrywki). Oblicz długość boku wyciętych kwadratowych naroży, dla której objętość otrzymanego pudełka jest największa. Oblicz tę objętość.

Ukryj Podobne zadania

Dany jest prostokątny arkusz kartonu o długości 64 cm i szerokości 40 cm. Po dwóch stronach tego arkusza wycięto prostokąty, w których stosunek boków jest równy 1:2 (zacieniowane prostokąty na rysunku).


PIC


Następnie zagięto karton wzdłuż linii przerywanych, tworząc w ten sposób prostopadłościenne pudełko (bez przykrywki). Oblicz długości boków wyciętych prostokątów, dla których objętość otrzymanego pudełka jest największa. Oblicz tę objętość.

Krawędź boczna ostrosłupa prawidłowego trójkątnego jest nachylona do płaszczyzny podstawy pod kątem α . Przez krawędź podstawy tego ostrosłupa poprowadzono płaszczyznę, która jest nachylona do płaszczyzny podstawy pod katem β , i która przecina przeciwległą krawędź ostrosłupa (zobacz rysunek).


PIC


Oblicz stosunek pola powierzchni otrzymanego przekroju do pola powierzchni podstawy ostrosłupa jeżeli wiadomo, że 5 sinα = 4sin(α + β ) .

Metalową kulę o promieniu R = 3 cm przetopiono na stożek. Tworząca stożka jest nachylona do płaszczyzny podstawy pod kątem α , takim, że  √ - sinα = --5 5 . Wyznacz promień podstawy tego stożka.

Stożek ma wysokość 10 cm. Pole przekroju osiowego tego stożka jest równe 30 cm 2 . Jaką długość ma tworząca tego stożka?

Krawędź sześcianu ma długość a . Oblicz pole przekroju tego sześcianu płaszczyzną przechodzącą przez przekątną podstawy i środki dwóch kolejnych krawędzi górnej podstawy.

W sześcian o krawędzi 4 wpisano kulę styczną do trzech ścian sześcianu oraz przechodzącą przez środek sześcianu. Oblicz promień tej kuli.

Każda krawędź graniastosłupa prawidłowego sześciokątnego ma długość równą 6. Oblicz cosinus kąta nachylenia dłuższej przekątnej tego graniastosłupa do płaszczyzny podstawy graniastosłupa.

Podstawą graniastosłupa prostego  ′ ′ ′ ′ ABCDA B C D jest równoległobok ABCD o bokach długości |AB | = 5 i |BC | = 4 . Oblicz długość wysokości A ′A graniastosłupa jeżeli |∡A ′BC | = 1 05∘ oraz |∡A ′CB | = 45∘ .

Wśród wszystkich graniastosłupów prawidłowych sześciokątnych, w których suma długości wszystkich krawędzi jest równa 24, jest taki, który ma największe pole powierzchni bocznej. Oblicz długość krawędzi podstawy tego graniastosłupa.

W ostrosłup prawidłowy czworokątny wpisujemy graniastosłupy prawidłowe czworokątne w ten sposób, że dolna podstawa graniastosłupa zawiera się podstawie ostrosłupa, a każdy z wierzchołków górnej podstawy należy do jednej z krawędzi bocznych ostrosłupa. Wiedząc, że każda z krawędzi ostrosłupa ma długość 6, oblicz jaka jest maksymalna możliwa powierzchnia boczna graniastosłupa.

Środek P tworzącej stożka połączono z końcami A i B średnicy koła w podstawie stożka tak, że AP = BP . Wiedząc, że kąt rozwarcia stożka jest równy 6 0∘ , oblicz kąty trójkąta ABP .


PIC


Tangens kąta nachylenia ściany bocznej do płaszczyzny podstawy ostrosłupa prawidłowego czworokątnego jest równy 23 . Oblicz tangens nachylenia krawędzi bocznej do płaszczyzny podstawy tego ostrosłupa.

W ostrosłupie prawidłowym trójkątnym ABCS cosinus kąta nachylenia krawędzi bocznej do płaszczyzny podstawy jest równy  √- 2-7- 7 . Wykaż, że pole powierzchni bocznej tego ostrosłupa stanowi 2 3 jego pola powierzchni całkowitej.


PIC


Graniastosłup prawidłowy trójkątny o krawędzi podstawy 4 cm i wysokości 10 cm przecięto płaszczyzną zawierającą wysokość podstawy i jedną z krawędzi bocznych. Jakie pole ma ten przekrój?

Wysokość ostrosłupa prawidłowego sześciokątnego jest równa 6 cm i stanowi 32 długości krawędzi podstawy.

  • Oblicz miarę kąta nachylenia ściany bocznej do podstawy.
  • Oblicz objętość ostrosłupa
Ukryj Podobne zadania

Wysokość ostrosłupa prawidłowego sześciokątnego jest równa 9 cm i stanowi 32 długości krawędzi podstawy.

  • Oblicz miarę kąta nachylenia ściany bocznej do podstawy.
  • Oblicz objętość ostrosłupa.

Każda ściana graniastosłupa jest rombem o boku długości a i kącie ostrym o mierze 60∘ . Oblicz objętość tego graniastosłupa.

Oblicz wysokość graniastosłupa sześciokątnego prawidłowego, wiedząc, że krawędź podstawy ma długość 5 cm, zaś najdłuższa przekątna graniastosłupa jest 4 razy dłuższa od najkrótszej przekątnej podstawy.

Ukryj Podobne zadania

Oblicz wysokość graniastosłupa sześciokątnego prawidłowego, wiedząc, że krawędź podstawy ma długość 4 cm, zaś najdłuższa przekątna graniastosłupa jest 5 razy dłuższa od najkrótszej przekątnej podstawy.

W graniastosłupie prawidłowym sześciokątnym ABCDEF GHIJKL płaszczyzna ABQ przechodzi przez krawędź AB i przez środek Q krawędzi DJ (zobacz rysunek).


ZINFO-FIGURE


Stosunek pola przekroju graniastosłupa płaszczyzną ABQ do pola jego podstawy jest równy 178 . Oblicz objętość graniastosłupa ABCDEF GHIJKL , jeżeli jego krawędź boczna ma długość b .

Powierzchnia boczna stożka jest po rozwinięciu ćwiartką koła o promieniu 16 cm. Oblicz pole powierzchni całkowitej i objętość tego stożka.

Ukryj Podobne zadania

Powierzchnia boczna stożka jest po rozwinięciu ćwiartką koła o promieniu 12 cm. Oblicz pole powierzchni całkowitej i objętość tego stożka.

Strona 10 z 28
spinner