Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria

Wyszukiwanie zadań

W ostrosłup prawidłowy czworokątny wpisano sześcian tak, że jego cztery wierzchołki należą do wysokości ścian bocznych ostrosłupa, a pozostałe do płaszczyzny podstawy. Oblicz stosunek objętości ostrosłupa do objętości sześcianu jeżeli kąt nachylenia ściany bocznej do płaszczyzny podstawy jest równy α .

W ostrosłupie ABCS podstawa ABC jest trójkątem równobocznym o boku długości a . Krawędź AS jest prostopadła do płaszczyzny podstawy. Odległość wierzchołka A od ściany BCS jest równa d . Wyznacz objętość tego ostrosłupa.

W ostrosłupie prawidłowym czworokątnym ABCDS (zobacz rysunek) przekątna AC podstawy ma długość  √ -- 4 2 . Kąt ASC między przeciwległymi krawędziami bocznymi ostrosłupa ma miarę 60∘ . Oblicz objętość tego ostrosłupa.


PIC


Ukryj Podobne zadania

W ostrosłupie prawidłowym czworokątnym ABCDS (zobacz rysunek) przekątna AC podstawy ma długość 6. Kąt ASC między przeciwległymi krawędziami bocznymi ostrosłupa ma miarę 60∘ . Oblicz objętość tego ostrosłupa.


PIC


Dany jest ostrosłup prawidłowy trójkątny ABCS o podstawie ABC . Krawędź podstawy tego ostrosłupa ma długość a . Ściana boczna jest nachylona do płaszczyzny podstawy pod kątem α takim, że  √ - cos α = --3 3 . Przez środek K krawędzi CA i środek L krawędzi AB poprowadzono płaszczyznę π prostopadłą do płaszczyzny SBC . Oblicz pole otrzymanego przekroju.

Podstawą graniastosłupa prostego  ′ ′ ′ ′ ABCDA B C D jest romb ABCD . Przekątna AC ′ tego graniastosłupa ma długość 8 i jest nachylona do płaszczyzny podstawy pod kątem 30 ∘ , a przekątna BD ′ jest nachylona do tej płaszczyzny pod kątem 45∘ . Oblicz pole powierzchni całkowitej tego graniastosłupa.


PIC


Ukryj Podobne zadania

Podstawą graniastosłupa prostego  ′ ′ ′ ′ ABCDA B C D jest romb ABCD . Przekątna AC ′ tego graniastosłupa ma długość 6 i jest nachylona do płaszczyzny podstawy pod kątem 30 ∘ , a przekątna BD ′ ma długość  √ -- 3 2 . Oblicz pole powierzchni całkowitej tego graniastosłupa.


PIC


Podstawą graniastosłupa prostego  ′ ′ ′ ′ ABCDA B C D jest romb ABCD . Przekątna A ′C tego graniastosłupa ma długość 6 i jest nachylona do płaszczyzny podstawy pod kątem 3 0∘ , a objętość graniastosłupa jest równa 27√-3- 2 . Oblicz pole powierzchni całkowitej tego graniastosłupa.


PIC


Powierzchnia boczna walca po rozwinięciu jest prostokątem, którego przekątna ma długość 18 cm i tworzy z bokiem odpowiadającym wysokości walca kąt o mierze 60∘ . Oblicz objętość walca.

Ukryj Podobne zadania

Powierzchnia boczna walca po rozwinięciu jest prostokątem, którego przekątna ma długość 6 cm i tworzy z bokiem odpowiadającym wysokości walca kąt o mierze 30∘ . Oblicz objętość walca.

Oblicz objętość graniastosłupa prawidłowego trójkątnego, w którym krawędź podstawy ma długość 1, a przekątna ściany bocznej tworzy z sąsiednią ścianą kąt o mierze 30 ∘ .

Ukryj Podobne zadania

W graniastosłupie prawidłowym trójkątnym krawędź podstawy ma długość 4, a przekątna AE , ściany ABEF jest nachylona do ściany ABCD pod kątem ostrym α takim, że  √ - sin α = --3 4 .


PIC


  • Zaznacz na rysunku kąt α .
  • Oblicz objętość graniastosłupa.

Dany jest ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD i polu powierzchni bocznej równym P . Kąt między wysokościami sąsiednich ścian bocznych poprowadzonych z wierzchołka S ma miarę 2α . Objętość tego ostrosłupa jest równa ∘k -⋅P-3 ⋅-sin-α-cos(2α) , gdzie k jest stałym współczynnikiem liczbowym. Oblicz współczynnik k .

W ostrosłup prawidłowy czworokątny wpisano kulę o promieniu r . Ściana boczna ostrosłupa nachylona jest do płaszczyzny podstawy pod kątem 2α . Oblicz objętość tego ostrosłupa.

Ukryj Podobne zadania

W ostrosłup prawidłowy czworokątny wpisano kulę o promieniu 2. Ściana boczna ostrosłupa nachylona jest do płaszczyzny podstawy pod kątem 60 ∘ . Oblicz objętość tego ostrosłupa.

Pole powierzchni bocznej graniastosłupa prawidłowego czworokątnego jest 6 razy większe, od jego pola podstawy, a objętość tego graniastosłupa jest równa 12. Oblicz długość krawędzi podstawy oraz długość przekątnej tego graniastosłupa. Zapisz obliczenia.

Na płaskiej powierzchni położono trzy kule K 1,K2,K 3 , każda o promieniu 2 tak, że kule K 1 i K2 są styczne w punkcie P3 , kule K2 i K 3 są styczne w punkcie P1 , a kule K 3 i K1 są styczne w punkcie P2 . Następnie położono na tych kulach kulę K 4 o promieniu 3, która jest styczna do kul K ,K ,K 1 2 3 odpowiednio w punktach S1,S 2,S 3 .

  • Uzasadnij, że odcinki P1P 2 i S 1S2 są równoległe.
  • Oblicz obwód trapezu P1P2S 1S2 .

Każda krawędź graniastosłupa trójkątnego ma długość 26. Ściana boczna ACF D jest prostopadła do płaszczyzny podstawy ABC , a krawędź AD jest nachylona do płaszczyzny podstawy pod katem α takim, że tgα = 2,4 (zobacz rysunek).


PIC


Oblicz cosinus kąta DBF .

Dany jest graniastosłup prawidłowy trójkątny ABCDEF o podstawach ABC i DEF i krawędziach bocznych AD , BE i CF . Oblicz pole trójkąta ABF wiedząc, że |AB | = 10 i |CF | = 11 . Narysuj ten graniastosłup i zaznacz na nim trójkąt ABF .

Ukryj Podobne zadania

Dany jest graniastosłup prawidłowy trójkątny ABCDEF o podstawach ABC i DEF i krawędziach bocznych AD , BE i CF . Oblicz pole trójkąta ABF wiedząc, że |AB | = 6 i |CF | = 13 . Narysuj ten graniastosłup i zaznacz na nim trójkąt ABF .

Pole powierzchni całkowitej Pc stożka oraz jego pole podstawy Pp spełniają równanie  √ -- √ -- 3Pc = 3Pp (2+ 3) . Oblicz miarę kąta rozwarcia stożka.

Oblicz objętość ostrosłupa prawidłowego trójkątnego o krawędzi podstawy 6 cm i krawędzi bocznej 12 cm.

Ukryj Podobne zadania

Oblicz objętość ostrosłupa prawidłowego trójkątnego o krawędzi podstawy długości 6 cm i krawędzi bocznej długości 8 cm.

Każda z krawędzi podstawy trójkątnej ostrosłupa ma długość  √ -- 10 3 , a każda jego krawędź boczna ma długość 15. Oblicz wysokość tego ostrosłupa.

Dany jest sześcian ABCDEF GH o krawędzi długości 2. Punkt S jest środkiem krawędzi GC (zobacz rysunek). Oblicz promień okręgu opisanego na trójkącie EDS .


PIC


W ostrosłupie prawidłowym trójkątnym krawędź podstawy ma długość a . Kąt między krawędzią boczną, a krawędzią podstawy ma miarę α > 30∘ . Oblicz objętość ostrosłupa.

Dany jest ostrosłup o podstawie pięciokątnej ABCDES (zobacz rysunek). Każda ze ścian bocznych tego ostrosłupa jest trójkątem o polu trzy razy mniejszym niż pole pięciokąta ABCDE . Pole powierzchni całkowitej tego ostrosłupa jest równe 136. Oblicz pole jego podstawy.


PIC


Dany jest sześcian ABCDEF GH o krawędzi długości 1. Punkty K i L są środkami odpowiednio krawędzi AD i AB , a punkt S jest środkiem odcinka KL . Punkt T jest takim punktem krawędzi CG , że |∡EST | = 90∘ (zobacz rysunek).


ZINFO-FIGURE


Oblicz odległość punktu S od środka odcinka ET .

Strona 9 z 28
spinner