Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Geometria analityczna/Równanie prostej/Z parametrem

Wyszukiwanie zadań

Proste o równaniach: 2x − y − 3m + 2 = 0 i x + 2y + m − 9 = 0 przecinają się w punkcie M . Dla jakich wartości m ∈ R punkt M należy do prostej o równaniu 3x − 2y − 5 = 0 .

Prosta y = mx + 3 tworzy z dodatnimi półosiami układu współrzędnych trójkąt o polu 7. Wyznacz m .

Prosta y = t przecina proste y = 2x− 1 i y = 0,5x + 2 odpowiednio w punktach A i B .

  • Wyraź długość odcinka AB jako funkcję zmiennej t .
  • Wyznacz takie punkty A i B , aby długość odcinka AB była równa 3.

Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y ) , dane są proste k oraz l o równaniach

k : y = 1-x− 2 4 l : y = ax + 2,

gdzie a jest pewną liczbą rzeczywistą. Proste k i l są prostopadłe. Wyznacz ich punkt przecięcia.

Wyznacz te wartości parametru m , dla których punkt przecięcia się prostych o równaniach 2x + y − 7m + 7 = 0 i x + 3y + 5m 2 − 6m + 1 = 0 należy do 3 ćwiartki układu współrzędnych.

Dla jakich wartości parametru m punkt przecięcia się prostych 2x − y − m = 0 i 3y − x + 6 = 0 należy do prostej 2y − x = 0 . Podaj współrzędne tego punktu i oblicz jego odległość od prostej 12y − 5x − 1 = 0 .

Zbadaj dla jakich wartości parametru m punkt przecięcia się prostych mx + (2m − 1)y − 3m = 0 i x + my − m = 0 należy do prostokąta o wierzchołkach A = (−1 ,−2 ), B = (1,− 2), C = (1,2), D = (− 1,2) ?

Dla jakich wartości parametru p proste  2 x − y − p + 1 = 0 i x + y − p 2 + 2p + 3 = 0 przecinają się w punkcie należącym do wnętrza prostokąta o wierzchołkach A = (4,− 1) , B = (10,− 1) , C = (10,2 ) , D = (4,2 ) ?

spinner