Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Przez wierzchołek kąta prostego trójkąta prostokątnego o przyprostokątnych 5 i 12 poprowadzono prostą, która dzieli ten trójkąt na dwa trójkąty o równych obwodach. Znajdź stosunek promieni okręgów wpisanych w otrzymane z podziału trójkąty.

Wykaż, że jeżeli kąty wewnętrzne trójkąta spełniają warunek  sinβ+-sinγ- sin α = cosβ+ cos γ to trójkąt ten jest prostokątny.

Trójkąt prostokątny ABC ma boki długości 3, 4, 5. Oblicz promień okręgu stycznego do przeciwprostokątnej i prostych będących przedłużeniami przyprostokątnych.

Punkt M przyprostokątnej BC trójkąta prostokątnego ABC zrzutowano na przeciwprostokątną AB otrzymując punkt N . Wykaż, że |∡MAN | = |∡MCN | .

Wykaż, że w trójkącie prostokątnym suma długości obu przyprostokątnych jest równa sumie długości średnic okręgów wpisanego i opisanego na tym trójkącie.

*Ukryj

Przyprostokątne trójkąta prostokątnego mają długości a i b , a jego przeciwprostokątna ma długość c . Wykaż, że promień okręgu wpisanego w ten trójkąt ma długość r = a+b−c- 2 .

Oblicz jaka może być najmniejsza możliwa długość przeciwprostokątnej trójkąta prostokątnego o polu S .

Okrąg wpisany w trójkąt prostokątny ABC o bokach długości |AB | = 8,|BC | = 6,|AC | = 10 jest styczny do boków AC i BC w punktach D i E . Proste DE i AB przecinają się punkcie F . Oblicz pole trójkąta EBF .

Na przyprostokątnych AC i BC trójkąta prostokątnego ABC zbudowano, na zewnątrz trójkąta, kwadraty ACDE i BF GC . Odcinek AF przecina przyprostokątną BC w punkcie L , a odcinek BE przecina przyprostokątną AC w punkcie K (zobacz rysunek). Udowodnij, że |KC | = |LC | .


PIC


Na przyprostokątnych AB i AC trójkąta prostokątnego równoramiennego ABC zaznaczono odpowiednio punkty K i L tak, że |AK-|= |CL-|= 1 |KB | |LA | 2 . Odcinki BL i CK przecinają się w punkcie M . Oblicz |MB | |MK-| .

Przez środek D przyprostokątnej BC trójkąta prostokątnego ABC poprowadzono prostą prostopadłą do przeciwprostokątnej AB . Prosta ta przecina proste AB i AC odpowiednio w punktach M i N . Wykaż, że |BC |2 = 4⋅ |DN |⋅ |DM | .


PIC


*Ukryj

Przez środek D przyprostokątnej BC trójkąta prostokątnego ABC poprowadzono prostą prostopadłą do przeciwprostokątnej AB . Prosta ta przecina proste AB i AC odpowiednio w punktach M i N . Wykaż, że skala podobieństwa trójkątów ABC i ANM jest równa -2cosα- 1+cos2α .


PIC


W trójkącie prostokątnym ABC o kącie prostym w wierzchołku C obrano taki punkt P , że pola trójkątów PAB , PBC i PAC są równe. Oblicz długość odcinka PC , wiedząc, że |PA |2 + |PB |2 = m .

Na zewnątrz równoramiennego trójkąta prostokątnego zbudowano kwadraty – jeden na przyprostokątnej, a drugi na przeciwprostokątnej. Wykaż, że przeciwprostokątna dzieli odcinek łączący środki kwadratów na dwie równe części.


PIC


Przez środek D przyprostokątnej BC trójkąta prostokątnego ABC poprowadzono prostą prostopadłą do przeciwprostokątnej AB . Prosta ta przecina proste AB i AC odpowiednio w punktach M i N . Wykaż, że |MD-| |AC|2 |DN | = |AB|2 .


PIC


Środkowa trójkąta jest równa połowie boku, do którego została poprowadzona. Wykaż, że trójkąt ten jest prostokątny.

Wysokość trójkąta prostokątnego poprowadzona do przeciwprostokątnej ma długość h i jest pięć razy krótsza od obwodu tego trójkąta. Oblicz długości boków trójkąta.