Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Trójkąt/Dowolny/Udowodnij...

Wyszukiwanie zadań

W trójkącie ostrokątnym ABC dane są |∡BAC = α| i |∡ABC | = β < α . Wykaż, że tangens kąta utworzonego przez środkową i wysokość opuszczone z wierzchołka C jest równy

--1---− --1---. 2tg β 2 tgα

Na boku BC trójkąta ABC wybrano punkt D tak, by |∡CAD | = |∡ABC | . Odcinek AE jest dwusieczną kąta DAB . Udowodnij, że |CE | = |AC | .


PIC


Na bokach AB i AC trójkąta ABC wybrano odpowiednio punkty K i L w ten sposób, że |BK | = |AL | . Punkt D jest środkiem odcinka BC . Przez punkty K i L poprowadzono proste równoległe do AD , które wyznaczyły na boku BC punkty E i F odpowiednio (zobacz rysunek). Wykaż, że jeżeli |BC | = 2|EF | , to |AB | = |AC | .


ZINFO-FIGURE


Punkty D i E są środkami boków CB i CA trójkąta ABC (zobacz rysunek). Wykaż, że odległość punktu B od prostej AD jest dwa razy większa od odległości punktu E od prostej AD .


PIC


W trójkącie a : b : c = 4 : 5 : 6 . Wykaż, że w tym trójkącie γ = 2α .

W trójkącie ABC wysokość CD dzieli bok AB na odcinki AD i DB (rysunek), przy czym |AD | = 16 i |DB | = 8 . Wykaż, że symetralna boku AB dzieli bok AC w stosunku 3:1.


PIC


Ukryj Podobne zadania

W trójkącie KLM wysokość MN dzieli bok KL na odcinki KN i NL (rysunek), przy czym |KN | = 6 i |NL | = 10 . Wykaż, że symetralna boku KL dzieli bok ML w stosunku 1:4.


PIC


Dany jest trójkąt ABC , w którym ∡B = β , a kąt zewnętrzny przy wierzchołku C ma miarę α .


PIC


Wykaż, że jeśli α = 2β , to trójkąt ABC jest równoramienny.

Wykaż, że jeżeli kąty wewnętrzne trójkąta spełniają warunek sin α = 2 cos γsin β to trójkąt ten jest równoramienny.

W trójkącie ostrokątnym ABC bok AB ma długość c , długość boku BC jest równa a oraz |∡ABC | = β . Dwusieczna kąta ABC przecina bok AC trójkąta w punkcie E . Wykaż, że długość odcinka BE jest równa 2ac⋅cos β --a+c-2 .

Na bokach BC ,AC i AB trójkąta ABC wybrano odpowiednio punkty D,E i F . Wykaż, że jeżeli okręgi opisane na trójkątach AF E i BDF są styczne, to punkt F leży na okręgu opisanym na trójkącie CED .

Suma długości wszystkich wysokości trójkąta ABC jest 9 razy większa od promienia okręgu wpisanego w ten trójkąt. Udowodnij, że trójkąt ABC jest równoboczny.

Uzasadnij, że jeżeli dwie dwusieczne trójkąta przecinają się pod kątem  ∘ 45 to trójkąt jest prostokątny.

Ukryj Podobne zadania

Punkt P jest środkiem okręgu wpisanego w trójkąt ABC oraz  ∘ |∡AP B | = 135 . Wykaż, że trójkąt ABC jest prostokątny.

Ukryj Podobne zadania

Dany jest trójkąt ABC , który nie jest równoramienny. W tym trójkącie miara kąta ABC jest dwa razy większa od miary kąta BAC . Wykaż, że długości boków tego trójkąta spełniają warunek

|AC |2 = |BC |2 + |AB |⋅|BC |.

Dany jest trójkąt ABC , w którym |AC | > |BC | . Na bokach AC i BC tego trójkąta obrano odpowiednio takie punkty D i E , że AB i DE przecinają się w punkcie F (zobacz rysunek). Wykaż, że jeżeli |∡BAC | = |∡ABC |− 2|∡AF D | , to |CD | = |CE | .


PIC


Odcinki AK i BL są wysokościami trójkąta ostrokątnego ABC , a punkt S punktem ich przecięcia. Wykaż, że podobne są trójkąty:

  • AKC i BLC ;
  • LAS i BKS ;
  • ABC i CKL .

Odcinki AD i BE są wysokościami trójkąta ostrokątnego ABC , a punkt H jest punktem ich przecięcia. Uzasadnij, że punkty H ,D ,C i E leżą na jednym okręgu.

Strona 5 z 5
spinner