Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Trójkąt/Dowolny/Udowodnij...

Wyszukiwanie zadań

W trójkącie ABC punkt S jest środkiem okręgu wpisanego, a punkty KLM są punktami styczności okręgu wpisanego w trójkąt z bokami BC ,CA i AB odpowiednio.

  • Uzasadnij, że na czworokącie AMSL można opisać okrąg.
  • Wiedząc, że  ∘ |∡CAB | = 3 8 oraz  ∘ |∡ABC | = 5 8 oblicz miary kątów trójkąta KLM .

Wykaż, że jeżeli α,β ,γ są kątami trójkąta, to

 α β γ sinα + sin β + sin γ = 4co s--cos --cos -. 2 2 2

W trójkącie ABC środkowa AD jest prostopadła do boku AC . Kąt BAC ma miarę 120∘ . Wykaż, że |AB | = 2|AC | .

Środkowa AD trójkąta ABC ma długość równą połowie długości boku BC oraz |BC | ≤ 2 . Wykaż, że |AB | ⋅|AC | ≤ 2 .

Na bokach AB , BC i CA trójkąta ABC wybrano odpowiednio punkty D ,E i F . Wykaż, że okręgi opisane na trójkątach ADF , BED i CF E przecinają się w jednym punkcie.

W trójkącie ABC środkowe AD i BE są prostopadłe. Wykaż, że  ( ) |AB |2 = 15 |BC |2 + |AC |2 .

Wykaż, że jeśli a,b są długościami boków trójkąta ostrokątnego takimi, że a < b oraz α ,β są miarami kątów tego trójkąta leżącymi odpowiednio naprzeciwko boków a,b , to α < β .

W trójkącie ABC punkt S jest środkiem okręgu wpisanego, a punkty M i N są punktami styczności tego okręgu z bokami AB i AC odpowiednio. Wykaż, że punkt S leży na okręgu opisanym na trójkącie AMN .

Wykaż, że jeżeli a,b,c są długościami boków trójkąta leżącymi naprzeciwko odpowiednio kątów o miarach α ≤ β ≤ γ to a ≤ b ≤ c .

Każdy kąt trójkąta ABC ma miarę mniejszą niż  ∘ 120 . Udowodnij, że wewnątrz trójkąta ABC istnieje punkt P taki, że

|∡AP B| = |∡BP C| = |∡CPA | = 120∘.

Dwa boki trójkąta ostrokątnego wpisanego w okrąg o promieniu R mają długości 32R i  √ -- R 3 . Wykaż, że długość trzeciego boku wynosi  --- R-(3+ √ 21) 4 .

Ukryj Podobne zadania

Trzy cięciwy okręgu o promieniu r tworzą trójkąt wpisany w ten okrąg. Dwie najkrótsze z tych cięciw mają długości 12r i √ -- r 3 . Wykaż, że trzecia cięciwa ma długość  - 1+-3√5 4 r .

Wykaż, że jeżeli a,b,c są długościami boków trójkąta to  2 2 1 2 a + b > 2c .

Ukryj Podobne zadania

Na bokach trójkąta zbudowano kwadraty o polach P 1,P 2 i P3 (zobacz rysunek)


PIC


Wykaż, że P 1 + P 2 > 12P3 .

Styczna w punkcie A do okręgu opisanego na trójkącie ABC przecina prostą BC w punkcie E . Niech D będzie punktem przecięcia dwusiecznej kąta A z prostą BC . Udowodnić, że AE = ED .

W trójkącie ABC , o bokach długości a,b ,c , połączono odcinkiem wierzchołek A z punktem E na boku BC takim, że BE = p i EC = q . Uzasadnij, że jeżeli d = AE , to a(d2 + pq) = b2p + c2q (twierdzenie Stewarta).

Dany jest trójkąt ABC . Na boku AB tego trójkąta obrano punkty D ,E i F tak, że |AD | = |DE | = |EF| = 2|F B| . Na bokach AC i BC obrano – odpowiednio – punkty G i H tak, że DG ∥ EC oraz FH ∥ EC (zobacz rysunek). Wykaż, że jeżeli pole trójkąta F BH jest równe S , to pole trójkąta ADG jest równe 3S .


PIC


Ukryj Podobne zadania

Dany jest trójkąt ABC . Na boku AB tego trójkąta obrano punkty D ,E i F tak, że |AD | = |DE | = |EF| = 3|F B| . Na bokach AC i BC obrano – odpowiednio – punkty G i H tak, że DG ∥ EC oraz FH ∥ EC (zobacz rysunek). Wykaż, że jeżeli pole trójkąta ADG jest równe S , to pole trójkąta F BH jest równe 1 6S .


ZINFO-FIGURE


Wykaż, że jeśli α i β są kątami trójkąta oraz sin-α sinβ cosβ = cosα to trójkąt ten jest równoramienny lub prostokątny.

Kąty w trójkącie mają miary: α, β = 2α, γ = 4α . Wykaż, że długości boków a, b, c tego trójkąta spełniają równość: 1a − 1b − 1c = 0 .

Punkty K i L są środkami boków AC i BC trójkąta ABC . Odcinki AL i BK przecinają się w punkcie S .


PIC


Uzasadnij, że pola trójkątów ASK i BSL są równe.

Punkt S jest punktem przecięcia się wysokości trójkąta ostrokątnego ABC . Wykaż, że jeżeli |CS | = |AB | to |∡ACB | = 45∘ .

Środkowa trójkąta jest równa połowie boku, do którego została poprowadzona. Wykaż, że trójkąt ten jest prostokątny.

Strona 4 z 5
spinner