Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Trójkąt/Dowolny/Udowodnij...

Wyszukiwanie zadań

Punkty K i M oraz L i N dzielą odpowiednio boki AC i BC trójkąta ABC w stosunku 1 : 1 : 2 (zobacz rysunek). Odcinki KN i LM przecinają się w punkcie S .


PIC


Uzasadnij, że pola trójkątów KMS i LNS są równe.

Wykaż, że jeżeli α,β ,γ są kątami wewnętrznymi trójkąta i  2 2 2 sin α+ sin β = 5sin γ , to sin γ ≤ 35 .

W trójkącie ABC poprowadzono dwusieczne kątów A i B . Dwusieczne te przecinają się w punkcie P . Uzasadnij, że kąt AP B jest rozwarty.

Ukryj Podobne zadania

W trójkącie ostrokątnym ABC proste AH i BH zawierają wysokości poprowadzone z wierzchołków A i B . Uzasadnij, że kąt AHB jest rozwarty.

Dany jest trójkąt ABC . Odcinek CD jest wysokością tego trójkąta, punkt E jest środkiem boku BC (tak jak na rysunku) i |CD | = |DE | . Udowodnij, że trójkąt CDE jest równoboczny.


PIC


Wykaż, że jeżeli kąty trójkąta: α,β,γ spełniają równanie  2 2 2 sin α = sin β + sin γ to trójkąt jest prostokątny.

Wykaż, że jeżeli środkowa trójkąta jest dwa razy krótsza od boku, do którego jest poprowadzona, to trójkąt ten jest prostokątny.

  • Uzasadnij, że jeśli długości boków trójkąta są równe p 2 − q2 , 2pq i p 2 + q2 , gdzie p i q są liczbami dodatnimi takimi, że p > q , to trójkąt ten jest prostokątny.
  • Wyznacz wszystkie naturalne wartości p i q , dla których najkrótszy bok otrzymanego trójkąta ma długość 13.

Udowodnij, że jeżeli środek okręgu opisanego na trójkącie leży na jednym z jego boków, to trójkąt ten jest prostokątny.

Wykaż, że jeżeli długości a ,b,c boków trójkąta spełniają równość

 1 1 3 ------+ ----- = ---------, a+ b b + c a+ b+ c

to promień okręgu opisanego na tym trójkącie jest równy b√3- 3 .

Odcinki DH i EI są równoległe do boku BC trójkąta ABC , a odcinki DF i EG są równoległe do boku AC . Uzasadnij, że jeżeli |CF|= |CH| |FG | |HA| , to  2 |AD | = |DE |⋅|DB | .


PIC


W trójkącie ABC poprowadzono dwusieczne kątów przecinające boki AB i AC tego trójkąta w punktach – odpowiednio – L i K . Punkt P jest punktem przecięcia tych dwusiecznych. Długości boków trójkąta ABC spełniają warunki: |AB |+ |AC | = 1 oraz

|BC |2 + 3|AC | = 3|AC |2 + 1.

Udowodnij, że punkt A leży na okręgu opisanym na trójkącie KLP .

W trójkącie ABC dwusieczna kąta B przecina bok AC w punkcie M . Przez punkt M prowadzimy prostą równoległą do BC , przecinającą bok AB w punkcie N (rys.). Udowodnij, że |MN | = |BN | .


PIC


Ukryj Podobne zadania

W trójkącie ABC dwusieczna kąta A przecina bok BC w punkcie P . Przez punkt P prowadzimy prostą równoległą do AC , przecinającą bok AB w punkcie Q (rys.). Udowodnij, że |P Q| = |AQ | .


PIC


Wykaż, że jeżeli kąty α,β ,γ trójkąta ABC spełniają warunek  1−cosγ- cos α = 2cosβ to trójkąt jest równoramienny.

Odcinek AS jest środkową trójkąta ABC . Udowodnij, że |AB |+ |AC | > 2|AS | .

Okrąg wpisany w trójkąt ABC jest styczny do boków AB i BC w punktach K i L odpowiednio. Na bokach AB i BC tego trójkąta wybrano punkty P i Q w ten sposób, że odcinek PQ jest styczny do okręgu wpisanego w trójkąt ABC (zobacz rysunek).


ZINFO-FIGURE


Wykaż, że jeżeli |AP | = |AC | , 8 ⋅|BC | = 17⋅|P B| i 3⋅ |BK | = 25 ⋅|LQ | , to trójkąt BP Q jest rozwartokątny.

Punkty D i E dzielą bok BC trójkąta ABC na trzy równe części (zobacz rysunek). Wykaż, że pole trójkąta ADE jest trzy razy mniejsze od pola trójkąta ABC .


PIC


Wykaż, że suma odległości dowolnego punktu wewnętrznego trójkąta od jego wierzchołków jest większa od połowy obwodu trójkąta.

Wykaż, że odcinek łączący środki dwóch boków trójkąta jest równoległy do trzeciego boku i ma długość równą połowie tego boku.

W trójkącie ostrokątnym ABC prawdziwa jest równość  2 2 |BC | − |AC | = |AB |⋅|AC | . Wykaż, że kąt BAC jest dwa razy większy od kąta ABC .

Wykaż, że jeżeli w trójkącie dwusieczna pokrywa się ze środkową, to trójkąt ten jest równoramienny.

Strona 3 z 5
spinner