Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Trójkąt/Dowolny/Udowodnij...

Wyszukiwanie zadań

Na bokach AC i BC trójkąta ABC obrano punkty P i Q takie, że |AP | : |PC | = 2 : 1 oraz |BQ | : |QC | = 2 : 1 . Odcinki AQ i BP przecinają się w punkcie R . Wykaż, że pole czworokąta CP RQ jest równe polu trójkąta ARP .

W trójkąt ABC , w którym |∡BAC | = α oraz |∡ABC | = β , wpisano okrąg. Punkty K ,L,M są punktami styczności okręgu odpowiednio z bokami AB , BC i AC . Wykaż, że |∡MKL | = α+β- 2 .


PIC


Proste zawierające wysokości trójkąta ostrokątnego ABC przecinają boki BC , AC i AB tego trójkąta odpowiednio w punktach K , L i M . Wykaż, że jeżeli trójkąt MLK jest podobny do trójkąta ABC , to trójkąt ABC jest równoboczny.

Wysokości w pewnym trójkącie ABC mają długości: 1 1 1 3,4, 5 . Wykaż, że jest to trójkąt prostokątny.

Dane są dwa trójkąty: ABC oraz  ′ ′ ′ A B C takie, że  ′ α = α oraz  ′ β + β = 180 .


PIC


Wykaż, że:

 ′ ′ |AC--|= |A-C-|. |BC | |B′C′|

W trójkącie ABC poprowadzono dwusieczne kątów przecinające boki BC , AC i AB tego trójkąta w punktach – odpowiednio – K , L oraz M . Punkt P jest punktem przecięcia tych dwusiecznych. Na czworokątach CLP K oraz BKP M można opisać okrąg. Udowodnij, że trójkąt ABC jest równoboczny.

Wykaż, że jeżeli α,β ,γ są kątami wewnętrznymi trójkąta i  2 2 2 sin α+ sin β < sin γ , to cos γ < 0 .

Ukryj Podobne zadania

Wykaż, że jeżeli α ≤ β ≤ γ są kątami wewnętrznymi trójkąta rozwartokątnego, to

sin2 α < sin2γ − sin2 β.

W trójkącie ABC dwusieczna kąta BAC przecina bok BC trójkąta w punkcie D . Wykaż, że

BD-- = AB-. DC AC

Trójkąty ABC i DEF wpisano w ten sam okrąg. Udowodnij, że równość obwodów tych trójkątów jest równoważna równości sum sinusów ich kątów wewnętrznych.

W trójkącie ABC miara kąta ACB jest dwa razy większa od miary kąta CAB . Dwusieczna kąta ACB dzieli trójkąt ABC na dwa trójkąty. Uzasadnij, że jeden z otrzymanych trójkątów jest podobny do trójkąta ABC .

Miary kątów trójkąta ABC są równe α = |∡BAC | , β = |∡ABC | i γ = |∡ACB | . Punkt S jest środkiem okręgu wpisanego w ten trójkąt, a proste zawierające odcinki AS i BS przecinają boki BC i AC tego trójkąta w punktach odpowiednio D i E (zobacz rysunek).


PIC


Wykaż, że jeżeli α + β = 2γ , to na czworokącie DCES można opisać okrąg.

Dany jest trójkąt ABC , w którym |BC | = a . Z wierzchołka B poprowadzono środkową BD do boku AC . Punkt S jest środkiem odcinka BD . Przez punkty A i S poprowadzono prostą, która przecięła bok BC w punkcie P . Wykaż, że długość odcinka CP jest równa 2a 3 .

Ukryj Podobne zadania

Dany jest trójkąt ABC oraz punkt D na jego boku AB taki, że  2 |AD | = 3|AB | . Z wierzchołka B poprowadzono środkową BE do boku AC . Punkt P jest punktem wspólnym odcinków CD i BE . Wykaż, że punkt P jest środkiem odcinka BE .

Wykaż, że jeżeli trójkąt nie jest rozwartokątny, oraz miara α jednego z jego kątów spełnia warunek sin α + cos α ≤ s2icno2sα2−α2 to trójkąt ten jest prostokątny.

Wierzchołek A trójkąta ostrokątnego ABC połączono odcinkiem ze środkiem O okręgu opisanego. Z wierzchołka A poprowadzono wysokość AH . Wykaż, że ∡BAH = ∡OAC .

Trójkąt ABC jest wpisany w okrąg o środku S . Kąty wewnętrzne CAB , ABC i BCA tego trójkąta są równe, odpowiednio, α, 2α i 4α . Wykaż, że trójkąt ABC jest rozwartokątny, i udowodnij, że miary wypukłych kątów środkowych ASB , ASC i BSC tworzą w podanej kolejności ciąg arytmetyczny.

W trójkącie ABC przedłużono bok AB poza wierzchołek B i odłożono odcinek BD taki, że |BD | = |BC | . Następnie połączono punkty C i D (rysunek). Wykaż, że |∡CDA | = 12|∡CBA | .


PIC


Ukryj Podobne zadania

W trójkącie ABC przedłużono bok BC poza wierzchołek C i odłożono odcinek CD taki, że |CD | = |AC | . Następnie połączono punkty A i D (rysunek). Wykaż, że |∡ADB | = 12|∡ACB | .


PIC


Uzasadnij wzór na pole trójkąta  h2sin(α+β)- P = 2sin αsin β , gdzie α i β są miarami kątów trójkąta przyległych do boku, na który opuszczono wysokość h .

Wiedząc, że punkt E jest środkiem odcinka AD , a punkt C jest środkiem odcinka BE oraz |AC | = |AE | , wykaż, że |AB | = |CD | .


PIC


W trójkącie ABC na boku BC zaznaczono punkt D , na boku AC zaznaczono punkt E , na boku AB punkt F . Poprowadzono okręgi oA , oB , oC , w ten sposób, że do okręgu oA należą punkty A , E , F , do oB – punkty B , D , F , a do o C – punkty C , D , E . Wykaż, że te trzy okręgi przecinają się w jednym punkcie.

Ukryj Podobne zadania

Okrąg o1 przechodzi przez wierzchołek B trójkąta ABC i przecina jego boki AB i BC odpowiednio w punktach F i D . Okrąg o2 przechodzi przez wierzchołek C , przecina okrąg o1 w punkcie D oraz w punkcie G leżącym wewnątrz trójkąta ABC . Ponadto okrąg o 2 przecina bok AC trójkąta w punkcie E .


PIC


Udowodnij, że punkt G leży na okręgu opisanym na trójkącie AF E .

W trójkącie ABC na boku AB wybrano takie punkty  ′ A i  ′ B , że

 1 |AA ′| = |BB ′| < --|AB |. 2

Przez punkty  ′ A i  ′ B poprowadzono proste równoległe do boków odpowiednio AC i BC . Proste te przecięły się w punkcie S . Wykaż, że odcinek CS jest zawarty w środkowej trójkąta ABC .

Strona 2 z 5
spinner