Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Dany jest wielomian  5 4 3 W (x) = x − x + nx + kx+ m . Wyznacz wszystkie wartości parametrów n,k,m dla których reszta z dzielenia wielomianu W (x ) przez wielomian P(x ) = (x2 − 1)(x− 2) jest równa R(x) = x− 4 .

Wielomian  5 3 2 W (x) = x − x + px + qx + r jest podzielny przez wielomian R (x) = x 3 + x + 12 . Wyznacz liczby p ,q i r .

Wyznacz wszystkie wartości parametrów a,b i c , dla których wielomian

 2 3 5 W (x) = 25(x − 2) + a(x + 1) + b (x − 1) + c

jest podzielny przez wielomian  3 2 P (x) = x − 2x − x + 2 .

Wyznacz resztę z dzielenia wielomianu  2013 2012 2011 W (x) = x − 2x + 2x − 1 przez wielomian G (x) = x3 − x .

Wielomian W (x) przy dzieleniu przez dwumiany (x − 2) , (x+ 4) daje reszty odpowiednio równe -3 oraz -51. Wyznacz resztę z dzielenia wielomianu W (x) przez wielomian P(x ) = x3 + 3x2 − 6x − 8 , wiedząc, że liczba -1 jest miejscem zerowym wielomianu W (x ) .

Wielomian  4 3 2 x − (a− b)x + (a+ b)x − 3x jest podzielny przez wielomian x 3 − 4x 2 + 3x . Oblicz a i b .

Wiedząc, że wielomian  3 2 W (x ) = x + ax + bx + 1 jest podzielny przez wielomian (x− 1)2 , oblicz a i b .

Wykaż, że jeżeli wielomian W (x) jest podzielny przez  3 (x + 3 ) , to wielomian W ′(x) jest podzielny przez (x + 3)2 .

Wielomian  5 4 3 2 W (x) = x − 5qx + 7x + qx + 4px − 2p jest podzielny przez wielomian P(x) = x 3 − 3x 2 + 4 . Wyznacz p i q .

Wielomian W (x) przy dzieleniu przez dwumiany (x − 1),(x + 2),(x − 3 ) daje reszty odpowiednio równe 5, 2, 27. Wyznacz resztę z dzielenia tego wielomianu przez wielomian P (x) = x 3 − 2x 2 − 5x+ 6 .

*Ukryj

Wyznacz resztę R(x) z dzielenia wielomianu W (x) przez wielomian P (x) = x3 − 2x 2 − x + 2 wiedząc, że W (− 1) = − 1, W (2) = 2, W (1) = 5 .

Przy dzieleniu wielomianu w (x) przez dwumian (x − 1 ) otrzymujemy resztę (− 3) , przy dzieleniu przez dwumian (x − 2 ) resztę 6, a przy dzieleniu przez dwumian (x+ 3) resztę 1. Wyznacz resztę z dzielenia wielomianu w(x) przez wielomian p(x) = x 3 − 7x + 6 .

Wielomian W (x) przy dzieleniu przez dwumiany (x − 1) , (x+ 2) , (x − 3) daje reszty odpowiednio równe 5, 2, 27. Wyznacz resztę z dzielenia tego wielomianu przez wielomian P (x) = (x − 1 )(x+ 2)(x− 3) .