Powierzchnia boczna stożka po rozwinięciu na płaszczyznę jest wycinkiem koła o promieniu 3 i kącie środkowym (zobacz rysunek). Oblicz objętość tego stożka.
Powierzchnia boczna stożka po rozwinięciu na płaszczyznę jest wycinkiem koła o promieniu 3 i kącie środkowym (zobacz rysunek). Oblicz objętość tego stożka.
Dwie kule mające średnice 4 cm i 1 cm wpisano w stożek w ten sposób, że większa jest styczna do podstawy i powierzchni bocznej stożka, zaś mniejsza – do powierzchni bocznej stożka i do większej kuli. Oblicz pole powierzchni tego stożka.
Objętość stożka jest równa , a tworząca jest nachylona do podstawy pod kątem . Oblicz pole powierzchni bocznej tego stożka.
Objętość stożka jest równa , a tworząca jest nachylona do podstawy pod kątem . Oblicz pole powierzchni bocznej tego stożka.
Pole powierzchni całkowitej stożka jest trzy razy większe od pola jego podstawy. Oblicz stosunek objętości stożka do objętości wpisanej w niego kuli.
Pole podstawy stożka jest trzy razy mniejsze od jego pola powierzchni całkowitej. Oblicz stosunek objętości kuli wpisanej w stożek do objętości stożka.
Rozwinięcie powierzchni bocznej stożka jest wycinkiem kołowym o kącie środkowym . Kąt ten oparty jest na cięciwie o długości . Oblicz objętość stożka.
Tworząca stożka ma długość 3 dm. Długość promienia podstawy stożka jest równa 1 dm. Powierzchnia boczna stożka po rozwinięciu na płaszczyznę jest wycinkiem koła. Oblicz miarę kąta środkowego tego wycinka.
Tworząca stożka ma długość 17, a wysokość stożka jest krótsza od średnicy jego podstawy o 22. Oblicz pole powierzchni całkowitej i objętość tego stożka.
Tworząca stożka ma długość 25, a średnica podstawy stożka jest krótsza od wysokości stożka o 10. Oblicz pole powierzchni całkowitej i objętość tego stożka.
Przekrój osiowy stożka jest trójkątem równoramiennym o podstawie długości 12. Wysokość stożka jest równa 8. Oblicz pole powierzchni bocznej tego stożka.
Pole podstawy stożka jest równe , a jego pole powierzchni bocznej jest równe . Oblicz objętość tego stożka.
Stożek, którego pole powierzchni bocznej jest równe , jest wpisany w kulę o promieniu 5. Oblicz objętość stożka.
Objętość stożka, w którym wysokość jest równa promieniowi podstawy, jest równa . Oblicz pole powierzchni całkowitej tego stożka. Przyjmując przybliżenie podaj wynik z dokładnością do 0,1.
W stożek o wysokości 10 wpisano kulę o promieniu 4. Oblicz pole powierzchni całkowitej stożka.
Połówkę koła o promieniu 12 zwinięto w stożek. Oblicz objętość i kąt rozwarcia tego stożka jeżeli długość łuku tej połówki koła jest obwodem podstawy, a jej promień jest tworzącą stożka.
Wysokość stożka podzielono na trzy równe odcinki i przez punkty podziału poprowadzono płaszczyzny równoległe do podstawy. Oblicz stosunek objętości powstałych brył.
Przedstawiona na rysunku bryła to stożek ścięty płaszczyzną równoległą do jego płaszczyzny podstawy. Wysokość tej bryły jest równa , a i () są promieniami podstaw. Oblicz objętość tej bryły.
W stożek o promieniu podstawy długości 9 i wysokości 12 wpisano walec, w ten sposób, że jedna podstawa walca zawiera się w podstawie stożka, a brzeg jego drugiej podstawy zawiera się w powierzchni bocznej stożka. Oblicz długość promienia podstawy i długość wysokości walca, wiedząc że pole powierzchni bocznej walca wynosi .
W stożek o promieniu podstawy długości 10 i wysokości 15 wpisano walec, w ten sposób, że jedna podstawa walca zawiera się w podstawie stożka, a brzeg jego drugiej podstawy zawiera się w powierzchni bocznej stożka. Oblicz długość promienia podstawy i długość wysokości walca, wiedząc że pole powierzchni bocznej walca wynosi .
Objętość stożka jest równa , a cosinus kąta między wysokością, a tworzącą wynosi 0,8. Oblicz:
W stożek w którym kąt między tworzącą, a podstawą ma miarę wpisano kulę. Oblicz stosunek objętości stożka do objętości kuli.
Tworzącą stożka widać ze środka kuli wpisanej w ten stożek pod kątem o mierze . Wyznacz stosunek objętości tej kuli do objętości stożka.
Dany jest stożek o objętości , w którym stosunek wysokości do promienia podstawy jest równy 3:8. Oblicz pole powierzchni bocznej tego stożka.
Dany jest stożek o objętości , w którym stosunek wysokości do promienia podstawy jest równy 5:9. Oblicz pole powierzchni bocznej tego stożka.
Oblicz objętość stożka wpisanego w kulę o promieniu , wiedząc, że kąt rozwarcia stożka ma miarę .