Podstawą ostrosłupa jest kwadrat . Trójkąt równoramienny ma ramię długości 15 i jest prostopadły do podstawy ostrosłupa. Krawędź ma długość 17. Oblicz pole przekroju ostrosłupa płaszczyzną , gdzie jest środkiem krawędzi .
/Szkoła średnia/Geometria
W pojemniku o kształcie walca o promieniu podstawy umieszczono dwie kule o promieniu , w ten sposób, że są do siebie styczne i każda z nich dotyka powierzchni bocznej walca, jak na rysunku. Jaka co najmniej musi być wysokość pojemnika, aby kule całkowicie się w nim mieściły. Oblicz objętość tego walca.
Objętość stożka ściętego (przedstawionego na rysunku) można obliczyć ze wzoru , gdzie i są promieniami podstaw (), a jest wysokością bryły. Dany jest stożek ścięty, którego wysokość jest równa 10, objętość , a . Oblicz cosinus kąta nachylenia przekątnej przekroju osiowego tej bryły do jednej z jej podstaw.
We wnętrzu sześcianu umieszczono czworościan foremny w ten sposób, że wszystkie krawędzie czworościanu są przekątnymi ścian bocznych sześcianu. Wyznacz stosunek objętości czworościanu do objętości sześcianu.
Koło ma promień długości . Wewnątrz tego koła rysujemy kolejno koła takie, że kolejne koło ma średnicę równą promieniowi poprzedniego koła.
Wyznacz pole koła .
Pole równoległoboku o danych wierzchołkach i jest równe 26. Wyznacz współrzędne pozostałych wierzchołków równoległoboku, jeżeli jego przekątne przecinają się w punkcie leżącym na prostej , który ma obie współrzędne będące liczbami całkowitymi.
Oblicz pole ośmiokąta foremnego wpisanego w okrąg o promieniu 6.
W trójkącie kąt jest dwa razy większy od kąta . Wykaż, że prawdziwa jest równość .
Dany jest trójkąt , który nie jest równoramienny. W tym trójkącie miara kąta jest dwa razy większa od miary kąta . Wykaż, że długości boków tego trójkąta spełniają warunek
Okrąg jest styczny do boków i trójkąta oraz przecina bok tego trójkąta w punktach oraz , przy czym . Wykaż, że jeśli , to trójkąt jest równoramienny.
Dane są wektory: , . Oblicz .
Dane są wektory: , . Oblicz .
Dane są wektory: , . Oblicz .
Średnica i cięciwa okręgu o środku i promieniu przecinają się w punkcie takim, że . Wykaż, że .
Dany jest okrąg o środku w punkcie i promieniu . Na przedłużeniu cięciwy poza punkt odłożono odcinek równy promieniowi danego okręgu. Przez punkty i poprowadzono prostą. Prosta przecina dany okrąg w punktach i (zobacz rysunek). Wykaż, że jeżeli miara kąta jest równa , to miara kąta jest równa .
Trójkąt przedstawiony na poniższym rysunku jest równoboczny, a punkty są współliniowe. Na boku wybrano punkt tak, że . Wykaż, że .
Dany jest trójkąt , w którym . Na bokach i tego trójkąta obrano odpowiednio takie punkty i , że i przecinają się w punkcie (zobacz rysunek). Wykaż, że jeżeli , to .
W graniastosłupie prawidłowym czworokątnym przekątna podstawy ma długość 4. Kąt jest równy . Oblicz objętość ostrosłupa przedstawionego na poniższym rysunku.
Dany jest okrąg o promieniu 11 oraz punkt oddalony o 7 od środka okręgu. Przez punkt poprowadzono cięciwę o długości 18. W jakim stosunku punkt podzielił tę cięciwę na dwa odcinki?
Przyprostokątne trójkąta prostokątnego mają długości 12 i 6. Oblicz długość promienia okręgu stycznego do obu przyprostokątnych, którego środek leży na przeciwprostokątnej, oraz oblicz odległości środka od wierzchołków trójkąta .
W układzie współrzędnych dane są dwa punkty: i .
- Wyznacz równanie symetralnej odcinka .
- Prosta oraz prosta o równaniu przecinają się w punkcie . Oblicz współrzędne punktu .
Jaki warunek musi spełniać liczba , aby istniał trójkąt o bokach ?
Wyznacz współrzędne środka jednokładności, w której obrazem okręgu o równaniu jest okrąg o równaniu , a skala tej jednokładności jest liczbą ujemną.
Dany jest ostrosłup prawidłowy sześciokątny. Wysokość ściany bocznej tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem i ma długość równą 6 (zobacz rysunek).
Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa.