Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria

Wyszukiwanie zadań

Ostrokątny trójkąt równoramienny ABC o podstawie AB jest wpisany w okrąg o równaniu x2 + y2 = 25 . Punkty A i B leżą na prostej o równaniu y = x− 5 .

  • Oblicz współrzędne punktów: A ,B,C .
  • Oblicz kąty trójkąta ABC .

W sześciokącie foremnym połączono środki sąsiednich boków otrzymując ponownie sześciokąt foremny. Oblicz stosunek pól: otrzymanego i wyjściowego sześciokąta.

Dany jest trójkąt równoboczny ABC . Okrąg o średnicy AB przecina bok BC w punkcie D .


PIC


Wykaż, że |CD | = |DB | .

Punkt M jest punktem wspólnym przekątnych trapezu prostokątnego ABCD . Punkt N jest punktem wspólnym przekątnej BD i wysokości CE opuszczonej na dłuższą podstawę AB . Wykaż, że |DM |2 = |MN |⋅|MB | .


PIC


Udowodnij, że trzy środkowe rozcinają trójkąt na sześć części o równych polach.

Odcinki AK i BL są wysokościami trójkąta ostrokątnego ABC , a punkt S punktem ich przecięcia. Wykaż, że podobne są trójkąty:

  • AKC i BLC ;
  • LAS i BKS ;
  • ABC i CKL .

Odcinki AD i BE są wysokościami trójkąta ostrokątnego ABC , a punkt H jest punktem ich przecięcia. Uzasadnij, że punkty H ,D ,C i E leżą na jednym okręgu.

Dany jest zbiór wszystkich graniastosłupów prawidłowych sześciokątnych, których suma długości wszystkich krawędzi jest równa 216. Oblicz długość krawędzi podstawy i wysokość tego z danych graniastosłupów, który ma największe pole powierzchni bocznej.

Prosta l przecina okrąg o środku S w punktach  ( √ -- 1) A = 1 − 2,− 8 i  ( ) √ -- 3 B = 1 + 2,− 8 . Punkt S leży na prostej l . Oblicz pole koła ograniczonego tym okręgiem.

Dany jest równoległobok ABCD , w którym |AB | = 12 , |AD | = 7 oraz

sin ∡BAD + sin ∡ABC = 5-. 7

Oblicz pole równoległoboku ABCD .

Przekształcenie P określone jest w następujący sposób: P (x,y) = (y + 2,x − 1) , gdzie x ,y ∈ R .

  • Wykaż, że przekształcenie P jest izometrią.
  • W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A (− 1,2) , B(2,− 4) , C(1,5 ) , a następnie znajdź jego obraz w przekształceniu P .
  • Wyznacz równanie prostej zawierającej wysokość trójkąta ABC poprowadzoną na bok AB .
  • Oblicz pole trójkąta  ′′ ′′ ′′ A B C , który jest obrazem trójkąta ABC w jednokładności o środku w punkcie (0,0) i skali k = −5 .

PIC

Dany jest graniastosłup prawidłowy czworokątny, którego suma długości wszystkich krawędzi wynosi 12.

  • Napisz wzór funkcji P wyrażającej pole powierzchni całkowitej graniastosłupa, w zależności od długości krawędzi podstawy x . Podaj dziedzinę funkcji P .

  • Wyznacz długości krawędzi graniastosłupa, dla których pole powierzchni całkowitej jest największe.

Wyznacz równanie okręgu o środku S = (3,− 5) przechodzącego przez początek układu współrzędnych.

Ukryj Podobne zadania

Na zewnątrz kwadratu ABCD na bokach AB i BC zbudowano trójkąty równoboczne AEB i BF C . Uzasadnij, że proste DF i CE są prostopadłe.


PIC


W graniastosłupie prawidłowym sześciokątnym wszystkie krawędzie mają jednakową długość. Oblicz objętość tego graniastosłupa jeżeli jego pole powierzchni całkowitej jest równe  √ -- 48 3+ 96 .

Wykaż, że punkt przecięcia przekątnych trapezu leży na prostej przechodzącej przez środki jego podstaw.

Przekątna przekroju osiowego walca ma długość 5 cm i jest nachylona do płaszczyzny podstawy pod kątem 60 ∘ . Jaką długość ma promień podstawy tego walca? Jaka jest jego wysokość?

Krawędź boczna ostrosłupa prawidłowego czworokątnego jest nachylona do płaszczyzny podstawy pod kątem α takim, że sin α = 13 . Oblicz cosinus kąta nachylenia ściany bocznej do płaszczyzny podstawy.

Dany jest trójkąt równoboczny ABC o boku długości 24. Punkt E leży na boku AB , a punkt F – na boku BC tego trójkąta. Odcinek EF jest równoległy do boku AC i przechodzi przez środek S wysokości CD trójkąta ABC (zobacz rysunek).


PIC


Oblicz długość odcinka EF .

Wyznacz wszystkie wartości x , dla których liczby 3 ,5,|x | mogą być długościami boków trójkąta.

Strona 111 z 112
spinner