Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe/Geometria/Planimetria

Wyszukiwanie zadań

Jeżeli α i β są miarami kątów ostrych trójkąta prostokątnego oraz cos2α + 2 sin 2β = 1 to
A)  -- tg α = √ 2 B)  √ - tgα = --2 2 C)  √ -- tg α = 3 D)  √ - tg α = -33

Ukryj Podobne zadania

Jeżeli α i β są miarami kątów ostrych trójkąta prostokątnego oraz 2 sin 2α + cos2 β = 1 to
A)  -- tg α = √ 2 B)  √ - tgα = --2 2 C)  √ -- tg α = 3 D)  √ - tg α = -33

Jeżeli suma miar kąta środkowego i kąta wpisanego opartych na tym samym łuku jest równa 1 80∘ , to kąty te są oparte na
A) 12 okręgu B) 23 okręgu C) 1 3 okręgu D) 1 4 okręgu

Czworokąty F1 i F są podobne. Pole czworokąta F 1 jest o 36% mniejsze od pola czworokąta F . Obwód czworokąta F jest większy od obwodu czworokąta F1 o:
A) 20% B) 25% C) 36% D) 18%

Ukryj Podobne zadania

Koło ma promień równy 12. Obwód wycinka tego koła o kącie środkowym 11 7∘ jest równy
A) 395 π B) 135 π C) 13π + 24 5 D) 39π + 24 5

Koło ma promień równy 4. Obwód wycinka tego koła o kącie środkowym  ∘ 45 jest równy
A) π B) 12π C) 1 π + 8 2 D) π + 8

Obwód kwadratu wpisanego w okrąg o długości 6 π jest równy
A)  √ -- 12 2 B)  √ -- 3 2 C) √12 2 D)  √ -- 6 2

Punkty D i E dzielą bok BC trójkąta ABC na trzy równe części (zobacz rysunek). Stosunek pól trójkątów ABC i ABD jest równy


PIC


A) 32 B) 23 C) 94 D) 4 9

Pole rombu jest równe 32, a kąt ostry ma miarę  ∘ 30 . Wysokość rombu jest równa
A) 3 B)  √ -- 4 3 C)  √ -- 3 4 D) 4

Ukryj Podobne zadania

Pole rombu jest równe 50, a kąt ostry ma miarę  ∘ 30 . Wysokość rombu jest równa
A)  √ -- 10 3 B) 5 C) 10 D)  √ -- 5 3

Pole rombu jest równe 18, a kąt ostry ma miarę  ∘ 30 . Wysokość rombu jest równa
A) 3 B)  √ -- 4 3 C)  √ -- 3 4 D) 4

Dany jest równoramienny trójkąt ABC o kącie przy podstawie AB równym 40 ∘ . Punkt O jest środkiem okręgu wpisanego w ten trójkąt. Przez punkty A i O poprowadzono prostą, która przecięła bok BC w punkcie D . Jeśli miara kąta ADC jest równa α , to
A)  ∘ α = 20 B)  ∘ α = 30 C)  ∘ α = 4 0 D)  ∘ α = 60

Ukryj Podobne zadania

Dany jest równoramienny trójkąt ABC o kącie przy podstawie AB równym 50 ∘ . Punkt O jest środkiem okręgu wpisanego w ten trójkąt. Przez punkty A i O poprowadzono prostą, która przecięła bok BC w punkcie D . Jeśli miara kąta ADC jest równa α , to
A)  ∘ α = 60 B)  ∘ α = 70 C)  ∘ α = 7 5 D)  ∘ α = 80

Dany jest równoramienny trójkąt ABC o kącie przy podstawie AB równym 30 ∘ . Punkt O jest środkiem okręgu wpisanego w ten trójkąt. Przez punkty A i O poprowadzono prostą, która przecięła bok BC w punkcie D . Jeśli miara kąta ADC jest równa α , to
A)  ∘ α = 45 B)  ∘ α = 30 C)  ∘ α = 5 0 D)  ∘ α = 60

Różnica długości podstaw trapezu równoramiennego o kącie ostrym  ∘ 6 0 i ramieniu długości 12 może być równa
A) 6 B) 8 C) 9 D) 12

Odcinek AD jest dwusieczną w trójkącie równoramiennym ABC poprowadzoną do ramienia BC .


PIC


Jeżeli |∡ADB | = 75∘ to miara kąta przy wierzchołku C jest równa
A) 30∘ B) 4 0∘ C) 45∘ D)  ∘ 50

Liczba przekątnych o długości  √ -- 2 3 w sześciokącie foremnym o boku długości 2 jest równa
A) 0 B) 3 C) 6 D) 9

W prostokącie ABCD dane są |AC | = 12 oraz |AD | = 6 . Wówczas cosinus kąta BDC jest równy
A) √ 3- B) 1 2 C) √ - --3 3 D) √ - -23

Okrąg jest styczny do boku AB trójkąta ABC w punkcie D oraz przecina boki AC i BC tego trójkąta odpowiednio w punktach E ,F i G ,H (zobacz rysunek). Kat CHF ma miarę 67 ∘ .


PIC


Zaznaczony na rysunku kąt α ma miarę
A) 157 ∘ B) 23∘ C) 13 4∘ D) 11 3∘

Ukryj Podobne zadania

Okrąg jest styczny do boku AB trójkąta ABC w punkcie D oraz przecina boki AC i BC tego trójkąta odpowiednio w punktach E ,F i G ,H (zobacz rysunek). Kat CHF ma miarę 72 ∘ .


PIC


Zaznaczony na rysunku kąt α ma miarę
A) 126 ∘ B) 36∘ C) 10 8∘ D) 14 4∘

Dane są okręgi styczne wewnętrznie o środkach A i B . Wiadomo, że promień jednego okręgu jest trzy razy dłuższy od promienia drugiego okręgu i |AB | = 2 23 . Promienie tych okręgów mają długość
A) 1 3 i 3 B) 1 1 2 i 41 2 C) 2 3 i 2 D)  1 13 i 4

Obwód trójkąta prostokątnego równoramiennego wynosi  √ -- 4(1 + 2) . Długość wysokości poprowadzonej z wierzchołka kąta prostego tego trójkąta jest równa
A) √ -- 2 B) 4 C) 2 D)  √ -- 2 2

Dany jest trapez równoramienny ABCD o podstawach AB i CD . Przedłużenia ramion przecinają się w punkcie O . Jeśli |AB | = 30 ,|CD | = 25,|AD | = |BC | = 6 , to
A) |BO | = 36 B) |BO | = 30 C) |BO | = 9,5 D) |BO | = 2 4

Ukryj Podobne zadania

Dany jest trapez równoramienny o podstawach AB ,CD . Przedłużenia ramion przecinają się w punkcie O . Jeśli |AB | = 30,|CD | = 25,|AC | = |BD | = 6 , to
A) DO = 36 B) DO = 3 0 C) DO = 9,5 D) DO = 2 4

Dany jest trapez równoramienny o podstawach AB ,CD . Przedłużenia ramion przecinają się w punkcie O . Jeśli |AB | = 43,|CD | = 38,|AC | = |BD | = 5 , to
A) BO = 38 B) BO = 30 C) BO = 4 3 D) BO = 24

Suma miar kąta wpisanego i kąta środkowego, opartych na 1 6 okręgu, jest równa
A) 60∘ B) 180∘ C) 45 ∘ D) 90∘

W trójkącie równoramiennym ABC dane są |AC | = |BC | = 7 oraz |AB | = 12 . Wysokość opuszczona z wierzchołka C jest równa
A) √ --- 13 B) √ -- 5 C) 1 D) 5

Ukryj Podobne zadania

W trójkącie równoramiennym ABC dane są |AC | = |BC | = 8 oraz |AB | = 10 . Wysokość opuszczona z wierzchołka C jest równa
A) √ --- 13 B) √ --- 39 C) 6 D) √ 89-

Podstawa trójkąta równoramiennego ma długość 6, a ramię ma długość 5. Wysokość opuszczona na podstawę ma długość
A) 3 B) 4 C) √ --- 34 D) √ 61-

W trójkącie równoramiennym ABC dane są |AC | = |BC | = 8 oraz |AB | = 12 . Wysokość opuszczona z wierzchołka C jest równa
A) √ --- 26 B)  √ -- 2 7 C) 2 D) 4√ 7-

Podstawa trójkąta równoramiennego ma długość 10, a ramię ma długość 13. Wysokość opuszczona na podstawę ma długość
A) √ ---- 194 B) √ --- 69 C) 12 D) 11

Podstawa trójkąta równoramiennego ma długość 10, a ramię ma długość 7. Wysokość opuszczona na podstawę ma długość
A)  √ --- 3 17 B)  √ -- 4 6 C) 2√ 6- D) √ 51-

W trójkącie równoramiennym ABC dane są |AC | = |BC | = 8 oraz |AB | = 14 . Wysokość opuszczona z wierzchołka C jest równa
A) √ --- 13 B) √ -- 5 C) √ 15- D) √ 113-

Odcinek AB jest średnicą okręgu o środku O i promieniu r . Na tym okręgu wybrano punkt C , taki, że |OB | = |BC | (zobacz rysunek).


PIC


Pole trójkąta AOC jest równe
A) 12r2 B) 14r2 C) π4-r2 D) √-3 2 4 r

Pole prostokąta przedstawionego na rysunku jest równe 20. Zatem


PIC


A) sin α = √441- B) co sα = √441- C)  √-5- sin α = 41 D)  √5-- tg α = 41

Ukryj Podobne zadania

Pole prostokąta przedstawionego na rysunku jest równe 18. Zatem


PIC


A) sinα = √25 B) co sα = 1√5- C)  √1- sin α = 5 D)  6 tgα = 3

Strona 5 z 28
spinner