Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe/Geometria/Planimetria/Trójkąt

Wyszukiwanie zadań

Przyprostokątne trójkąta prostokątnego mają długości 1 i 7. Sinus najmniejszego kąta tego trójkąta jest równy
A) √ - --2 10 B) 1 7 C) √- -2- 5 D) -7-- √ 50

Ukryj Podobne zadania

Przyprostokątne trójkąta prostokątnego mają długości 8 i 6. Sinus większego z kątów ostrych tego trójkąta jest równy
A) 35 B) 34 C) 45 D) 4 3

Przyprostokątne trójkąta prostokątnego mają długości 3 i 9. Sinus najmniejszego kąta tego trójkąta jest równy
A)  √ -- 3--10 10 B) 1 3 C) √-- -10- 10 D) √ -- -3100

Przyprostokątne w trójkącie prostokątnym mają długości 24 i 10 . Sinus najmniejszego kąta jest równy
A) 1206 B) 2426- C) 1204 D) 26 24

W trójkącie prostokątnym o długościach przyprostokątnych 2 i 5 cosinus większego z kątów ostrych jest równy
A) 52 B) 25 C) √-2- 29 D) -5-- √ 29

Przyprostokątne trójkąta prostokątnego mają długości 2 i 6. Sinus najmniejszego kąta tego trójkąta jest równy
A)  √ -- 2--10 10 B) 1 3 C) √-- -10- 10 D) -1-- √ 40

W trójkącie ABC miary kątów wynoszą:  ∘ |∡A | = 2α+ 45 , |∡B | = 3α , |∡C | = α − 15 ∘ . Wówczas
A) α = 30∘ B) α = 25∘ C) α = 5 5∘ D) α = 35∘

Stosunek długości podstawy do ramienia trójkąta równoramiennego jest równy 2:3. Ramię jest nachylone do podstawy pod kątem α , takim, że
A)  √ - sin α = 2-2- 3 B) sin α = 2 3 C) co sα = 23 D)  2√2 cosα = -3--

Ukryj Podobne zadania

Stosunek długości podstawy do ramienia trójkąta równoramiennego jest równy 6:4. Ramię jest nachylone do podstawy pod kątem α , takim, że
A) sin α = 3 4 B)  √ - sinα = --7 4 C)  3 co sα = 2 D)  √7 cosα = -4-

Stosunek długości podstawy do ramienia trójkąta równoramiennego jest równy 4:3. Ramię jest nachylone do podstawy pod kątem α , takim, że
A)  √- cosα = -5- 3 B) sinα = 2 3 C) co sα = 32 D)  √5 sin α = 3--

Dany jest trójkąt równoramienny ABC o kącie między ramionami |∡ACB | = 120∘ . Punkt O jest środkiem okręgu wpisanego w ten trójkąt. Prosta CO przecina podstawę AB w punkcie D . Miara kąta DOB jest równa
A)  ∘ 45 B)  ∘ 5 5 C)  ∘ 65 D)  ∘ 75

Ukryj Podobne zadania

Dany jest trójkąt równoramienny ABC o kącie między ramionami |∡ABC | = 140∘ . Punkt O jest środkiem okręgu wpisanego w ten trójkąt. Prosta CO przecina podstawę AB w punkcie D . Miara kąta DOB jest równa
A)  ∘ 45 B)  ∘ 8 0 C)  ∘ 70 D)  ∘ 60

Dany jest trójkąt równoramienny ABC o kącie między ramionami |∡ABC | = 160∘ . Punkt O jest środkiem okręgu wpisanego w ten trójkąt. Prosta CO przecina podstawę AB w punkcie D . Miara kąta DOB jest równa
A)  ∘ 85 B)  ∘ 5 5 C)  ∘ 65 D)  ∘ 75

Pole trójkąta prostokątnego równoramiennego wynosi  √ -- 2 2 2 cm . Zatem przeciwprostokątna ma długość:
A)  ∘ ----- 2 2√ 2 cm B)  -- √ 2 cm C) √4-- 8 cm D) √4-- 4 cm

Ukryj Podobne zadania

Pole trójkąta prostokątnego równoramiennego wynosi  √ -- 2 4 2 cm . Zatem przeciwprostokątna ma długość:
A)  ∘ ----- 2 2√ 2 cm B)  -- 4√ 2 cm C)  √4-- 4 2 cm D) √4 -- 8 cm

Pole trójkąta prostokątnego równoramiennego wynosi  √ -- 2 3 2 cm . Zatem przeciwprostokątna ma długość:
A)  ∘ ----- 2 2√ 2 cm B)  -- √ 6 cm C)  √4--- 2 12 cm D)  ∘ -√--- 2 3 2 cm

Pole trójkąta prostokątnego równoramiennego jest równe  2 8 cm . Przeciwprostokątna tego trójkąta ma długość
A) 8 cm B) 4 cm C)  √ -- 4 2 cm D)  √ -- 2 2 cm

Przyprostokątna AC trójkąta prostokątnego ABC ma długość 6, a przeciwprostokątna AB ma długość  √ -- 3 5 . Wtedy tangens kąta ostrego CAB tego trójkąta jest równy
A) √-5 5 B) 2√-5 5 C) 1 2 D) 2

Kąt α jest kątem ostrym w trójkącie prostokątnym i  5 sin α = 7 . Wówczas
A)  √ - tg α = 546- B)  √- tg α = 162- C)  5√-6 tg α = 12 D)  √6- tgα = 4

W trójkącie EF G bok EF ma długość 21. Prosta równoległa do boku EF przecina boki EG i FG trójkąta odpowiednio w punktach H oraz I (zobacz rysunek) w taki sposób, że |HI | = 7 i |GI | = 3 . Wtedy długość odcinka FI jest równa


PIC


A) 6 B) 9 C) 12 D) 17

Ukryj Podobne zadania

W trójkącie EF G bok EF ma długość 24. Prosta równoległa do boku EF przecina boki EG i FG trójkąta odpowiednio w punktach H oraz I (zobacz rysunek) w taki sposób, że |HI | = 8 i |GI | = 5 . Wtedy długość odcinka FI jest równa


PIC


A) 6 B) 9 C) 10 D) 12

Ramię trójkąta równoramiennego ABC ma długość 8 cm i tworzy z podstawą kąt o mierze 75 ∘ . Pole tego trójkąta jest równe
A) 4 cm 2 B) 32 cm 2 C) 8 cm 2 D) 1 6 cm 2

Ukryj Podobne zadania

Dany jest trójkąt równoramienny, w którym ramię o długości 10 tworzy z podstawą kąt 6 7,5∘ . Pole tego trójkąta jest równe
A)  √ -- 25 3 B)  √ -- 50 3 C) 25 √ 2- D) 50 √ 2-

Dany jest trójkąt równoramienny, w którym ramię o długości 20 tworzy z podstawą kąt 6 7,5∘ . Pole tego trójkąta jest równe
A)  √ -- 100 3 B)  √ -- 100 2 C) 200 √ 3- D) 20 0√ 2-

w trójkącie równoramiennym ramię ma długość 16 i tworzy z podstawą trójkąta kąt o mierze 75∘ . Pole tego trójkąta jest równe
A) 128 B) 64 C)  √ -- 128 2 D) 64√ 3-

Przez punkt przecięcia wysokości trójkąta równobocznego ABC poprowadzono prostą DE równoległą do podstawy AB (zobacz rysunek).


PIC


Stosunek pola trójkąta CDE do pola trapezu DABE jest równy
A) 5 : 9 B) 4 : 5 C) 4 : 9 D) 3 : 2

Dany jest trójkąt równoboczny ABC o boku długości 8. Ze środka S boku AC zakreślono koło o promieniu równym połowie boku trójkąta (zobacz rysunek).


PIC


Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Krótsze z łuków wyciętych przez punkty A i D , oraz D i E z danego okręgu, mają tą samą długość. PF
Odcinek AE jest dwa razy dłuższy od odcinka AD . PF

Odcinki BC i DE są równoległe i |AE | = 4 , |DE | = 3 (zobacz rysunek). Punkt D jest środkiem odcinka AB . Długość odcinka BC jest równa


PIC


A) 4 B) 6 C) 8 D) 16

Ukryj Podobne zadania

Odcinki BC i DE są równoległe i |AE | = 6 , |DE | = 5 (zobacz rysunek). Punkt D jest środkiem odcinka AB . Długość odcinka BC jest równa


PIC


A) 10 B) 6 C) 8 D) 30

W trójkącie prostokątnym o przyprostokątnych a,b oraz przeciwprostokątnej c , kąt α znajduje się naprzeciw przyprostokątnej α .


PIC


Wiadomo, że cosinus kąta α jest równy 45 . Wyrażenie  2 2 b-−cc2- ma wartość:
A) − -9 25 B) − 16 25 C) -9 25 D) 16 25

Długości boków trójkąta ABC są równe 10 cm, 11 cm, 15 cm. Zatem
A) trójkąt ten jest ostrokątny
B) trójkąt ten jest prostokątny
C) trójkąt ten jest rozwartokątny
D) jest zbyt mało danych aby określić jakiego rodzaju jest to trójkąt

Ukryj Podobne zadania

Długości boków trójkąta ABC są równe 8 cm, 15 cm, 17 cm. Zatem
A) trójkąt ten jest ostrokątny
B) trójkąt ten jest prostokątny
C) trójkąt ten jest rozwartokątny
D) jest zbyt mało danych aby określić jakiego rodzaju jest to trójkąt

Długości boków trójkąta ABC są równe 10 cm, 12 cm, 15 cm. Zatem
A) trójkąt ten jest ostrokątny
B) trójkąt ten jest prostokątny
C) trójkąt ten jest rozwartokątny
D) jest zbyt mało danych aby określić jakiego rodzaju jest to trójkąt

Promień koła wpisanego w trójkąt prostokątny o bokach 5 cm, 12 cm, 13 cm ma długość
A) 2,2 cm B) 1,8 cm C) 1,5 cm D) 2 cm

Ukryj Podobne zadania

Promień koła wpisanego w trójkąt prostokątny o bokach 6 cm, 8 cm, 10 cm ma długość
A) 2,2 cm B) 2 cm C) 1,5 cm D) 1,8 cm

Promień koła wpisanego w trójkąt prostokątny o bokach 8 cm, 15 cm, 17 cm ma długość
A) 3 cm B) 1,8 cm C) 1,5 cm D) 2 cm

Dwusieczne kątów ostrych trójkąta prostokątnego ABC przecinają się w punkcie P . Przyprostokątne AB i BC mają długości równe odpowiednio 12 i 9 (zobacz rysunek).


PIC


Odległość punktu P od przeciwprostokątnej AC jest równa
A) 3 B) 2 C) 15 D) 15 2

Ukryj Podobne zadania

Dany jest trójkąt prostokątny ABC o bokach |AC | = 24 , |BC | = 10 , |AB | = 26 . Dwusieczne kątów tego trójkąta przecinają się w punkcie P (zobacz rysunek).


ZINFO-FIGURE


Odległość x punktu P od przeciwprostokątnej AB jest równa
A) 2 B) 4 C) 52 D) 13 3

Dany jest trójkąt prostokątny ABC o bokach |AC | = 15 , |BC | = 8 , |AB | = 17 . Dwusieczne kątów tego trójkąta przecinają się w punkcie P (zobacz rysunek).


ZINFO-FIGURE


Odległość x punktu P od przeciwprostokątnej AB jest równa
A) 2 B) 4 C) 52 D) 3

Dany jest trójkąt prostokątny ABC o bokach |AC | = 12 , |BC | = 5 , |AB | = 13 . Dwusieczne kątów tego trójkąta przecinają się w punkcie P (zobacz rysunek).


ZINFO-FIGURE


Odległość x punktu P od przeciwprostokątnej AB jest równa
A) 1 B) 2 C) 52 D) 20 13

Dany jest trójkąt równoboczny ABC o boku długości 8. Ze środka S boku AC zakreślono koło o promieniu równym połowie boku trójkąta (zobacz rysunek).


PIC


Pole powierzchni części wspólnej koła i trójkąta jest równe
A) 4√ 3-+ 4 π 3 B) 8 √ 3+ 4π 3 C)  √ -- 8 8 3 + 3π D)  √ -- 8 4 3+ 3π

Wysokość trójkąta równobocznego jest równa  √ -- 6 3 . Pole tego trójkąta jest równe
A)  √ -- 3 3 B)  √ -- 4 3 C)  √ -- 27 3 D)  √ -- 36 3

Ukryj Podobne zadania

Trójkąt ACE jest prostokątny oraz AE ∥ BD (zobacz rysunek).


PIC


Jeżeli |BD | = 45|AE | oraz |BC | = 8 cm , to
A) |AB | = 2 cm B) |AC | = 12 cm C) |AB | = 4 cm D) |AC | = 9 cm

Dany jest trójkąt KLM , w którym |KM | = a , |LM | = b oraz a ⁄= b . Dwusieczna kąta KML przecina bok KL w punkcie N takim, że |KN | = c , |NL | = d oraz |MN | = e (zobacz rysunek).


ZINFO-FIGURE


W trójkącie KLM prawdziwa jest równość
A) a ⋅b = c ⋅d B) a ⋅d = b ⋅c C) a ⋅c = b⋅ d D) a ⋅b = e ⋅e

Strona 9 z 12
spinner