Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań

Liczba miejsc zerowych funkcji f (x) = |x+ 1|− |x + 3| , gdzie x ∈ R jest równa
A) 3 B) 2 C) 1 D) 0

Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 jej największy dzielnik będący liczbą pierwszą. Spośród liczb: f (42) , f (44) , f (45) , f(4 8) największa to
A) f(4 2) B) f(44) C) f (45) D) f (48)

Ukryj Podobne zadania

Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 jej największy dzielnik będący liczbą pierwszą. Spośród liczb: f (75) , f (63) , f (99) , f(6 5) największa to
A) f(7 5) B) f(63) C) f (99) D) f (65)

W ciągu arytmetycznym (an) wyraz a 29 jest dwa razy większy od wyrazu a15 oraz a11 ⁄= 0 . Wtedy iloraz a a3111 jest równy
A) 1 B) 2 C) 3 D) 4

Ukryj Podobne zadania

W ciągu arytmetycznym (an) wyraz a 33 jest dwa razy większy od wyrazu a17 oraz a13 ⁄= 0 . Wtedy iloraz a a4193 jest równy
A) 1 B) 2 C) 3 D) 4

Jeżeli  1 a − a = 3 to liczba  4 1- a + a4 jest równa
A) 121 B) 119 C) 123 D) 81

Ukryj Podobne zadania

Jeżeli  1 a − a = 2 , to liczba  4 -1 a + a4 jest równa
A) 36 B) 34 C) 6 D) 16

Jeżeli  1 √ -- a + a = 6 to liczba  4 1- a + a4 jest równa
A) 16 B) 6 C) 14 D) 36

Ze zbioru {1,2,3,...,102} losujemy 2 różne liczby. Jakie jest prawdopodobieństwo, że suma wylosowanych liczb jest podzielna przez 3?

Pole powierzchni bocznej ostrosłupa prawidłowego trójkątnego równa się  √ -- a2--15 4 , gdzie a oznacza długość krawędzi podstawy tego ostrosłupa. Zaznacz na poniższym rysunku kąt nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy. Miarę tego kąta oznacz symbolem β . Oblicz cosβ i korzystając z tablic funkcji trygonometrycznych i odczytaj przybliżoną wartość β z dokładnością do 1 ∘ .


PIC


Dany jest ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD . Pole trójkąta ASC jest równe 120, a cosinus kąta ASB jest równy 141649- . Oblicz pole powierzchni bocznej tego ostrosłupa.

W pewnym zakładzie pracy w wyniku dwóch podwyżek zwiększono pensje pracowników o 26%. W ramach pierwszej z tych podwyżek płace zwiększono o 20%. O ile procent zwiększono płace w ramach drugiej podwyżki?
A) o 12% B) o 6% C) o 5% D) o 10%

Ukryj Podobne zadania

W wyniku dwóch obniżek cenę spodni obniżono o 52%. W ramach pierwszej z tych obniżek cenę zmniejszono o 20%. O ile procent zmniejszono cenę w ramach drugiej obniżki?
A) o 60% B) o 40% C) o 20% D) o 50%

W wyniku dwóch obniżek cenę komputera obniżono o 40%. Druga z tych obniżek była obniżką o 25%. O ile procent obniżono cenę komputera przy pierwszej obniżce?
A) o 15% B) o 65% C) o 20% D) o 30%

Punkty A = (1,1) i B = (6,2) są wierzchołkami trójkąta ABC . Wysokości trójkąta ABC przecinają się w punkcie M = (3,3) . Oblicz pole tego trójkąta.

Tangens kąta α zaznaczonego na rysunku jest równy  5 − 7 . Wskaż równanie prostej k .


PIC


A) y = 75x B) y = √574-x C)  5 y = 7x D)  7 y = − 5x

Wyznacz zbiór wartości funkcji

 1 1 1 f(x ) = 1+ ------+ --------2 + -------3-+ ⋅⋅⋅ x − 1 (x − 1 ) (x− 1)

określonej dla wszystkich wartości x , dla których prawa strona powyższego wzoru jest sumą wyrazów zbieżnego szeregu geometrycznego.

Ukryj Podobne zadania

W ostrosłupie prawidłowym trójkątnym długość krawędzi podstawy jest równa a i jest 4 razy większa niż odległość środka podstawy od ściany bocznej. Oblicz objętość tego ostrosłupa.

Dany jest wielomian  3 2 W (x) = 8x − 6x + ax+ b . Jednym pierwiastkiem wielomianu jest prawdopodobieństwo otrzymania co najmniej 2 razy orła w trzykrotnym rzucie monetą. Drugi pierwiastek jest równy prawdopodobieństwu wypadnięcia parzystej liczby oczek na każdej kostce w rzucie dwiema kostkami. Wyznacz trzeci pierwiastek wielomianu.

Prosta k równoległa do osi Ox przecina wykres funkcji  ||3 || y = x w dwóch punktach A i B . Wyznacz współrzędne punktów A i B jeżeli wiadomo, że razem z punktem C = (7 ,− 3 ) tworzą trójkąt o polu 12.

Ukryj Podobne zadania

Prosta k równoległa do osi Ox przecina wykres funkcji  ||4|| y = |x| w dwóch punktach A i B . Wyznacz współrzędne punktów A i B jeżeli wiadomo, że razem z punktem C = (− 4,− 2) tworzą trójkąt o polu 6.

Ciąg (an) , gdzie n ∈ N + , określony jest następująco:

{ a1 = 2 an+1 = a3n dla n ≥ 1.

Wyznacz wszystkie wartości k , dla których suma k początkowych wyrazów ciągu (an) jest większa od 728 243 .

Ukryj Podobne zadania

Ciąg (an) , gdzie n ∈ N + , określony jest następująco:

{ a1 = 64 4an +1 = an dla n ≥ 1.

Wyznacz wszystkie wartości k , dla których suma k początkowych wyrazów ciągu (an) jest równa 1365 16 .

W tabeli umieszczono wynagrodzenie miesięczne 50 pracowników pewnej firmy:

Liczba pracowników 1 3 4 6 8 12 16
Wynagrodzenie 3600270021002000175016001450

Pracownicy firmy zarabiający mniej niż 2100zł otrzymali podwyżkę w wysokości 500zł, a pracownicy zarabiający powyżej 2000zł – podwyżkę w wysokości 20% średniego wynagrodzenia miesięcznego wszystkich pracowników. Ilu obecnie pracowników tej firmy zarabia więcej niż 3000zł?

Punkty D i E są środkami boków CB i CA trójkąta ABC (zobacz rysunek). Wykaż, że odległość punktu B od prostej AD jest dwa razy większa od odległości punktu E od prostej AD .


PIC


Znajdź x , dla którego liczby  x+ 1 x+1 2,2 ,2 + 6 w podanej kolejności tworzą ciąg arytmetyczny.

Strona 396 z 461
spinner