Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań
Ukryj Podobne zadania

Uzasadnij, że jeżeli a jest liczbą rzeczywistą różną od zera i  1 a = 5+ a , to a2 = 2 7− 1a2 .

Uzasadnij, że jeżeli prostokąt ABCD nie jest kwadratem, to punkty przecięcia dwusiecznych jego kątów wewnętrznych są wierzchołkami kwadratu.


PIC


Narysuj wykres funkcji  2 f (x) = − 3 sgn(x + 2x ) . Podaj zbiór wartości funkcji.

Dane są 2 koła styczne zewnętrznie o promieniach R i r (R > r ) oraz środkach O 1 i O 2 . Do tych kół poprowadzono wspólną styczną, która jest styczna do tych okręgów w punktach S1 i S2 odpowiednio (S1 ⁄= S2 ). Oblicz pole trójkąta AO S 1 1 , gdzie A jest punktem przecięcia się prostych S S 1 2 i O 1O 2 .


PIC


Dane są punkty A (1,0),B(− 1,1) . Punkt C należy do okręgu o równaniu x 2 + y2 = 1 . Znajdź współrzędne punktu C tak, aby pole trójkąta ABC było największe. Oblicz to pole.

Ukryj Podobne zadania

Dane są punkty A (−2 ,5),B(3,− 5) . Punkt C należy do okręgu o równaniu (x + 2)2 + y2 = 2 5 . Znajdź współrzędne punktu C tak, aby pole trójkąta ABC było największe. Oblicz to pole.

Wielomian  3 2 W (x) = 2x − bx − 1 jest podzielny przez dwumian x + 1 . Wynika stąd, że
A) b = − 3 B) b = − 1 C) b = 1 D) b = 3

Ukryj Podobne zadania

Wielomian  3 W (x) = −x + ax + 2 jest podzielny przez dwumian x+ 2 . Wynika stąd, że
A) a = − 3 B) a = 5 C) a = 2 D) a = 3

Wielomian  3 2 W (x) = 2x − bx − 1 jest podzielny przez dwumian x − 1 . Wynika stąd, że
A) b = − 3 B) b = − 1 C) b = 1 D) b = 3

Oblicz sumę stu najmniejszych dodatnich rozwiązań równania sin 2x = cos x .

Wykaż, że dla dowolnego kąta ostrego α , wartość wyrażenia sin 4α + cos2 α+ sin 2α ⋅cos2α jest stała.

Ukryj Podobne zadania

Wykaż, że dla dowolnego kąta ostrego α , wartość wyrażenia − cos4 α− sin 2α − cos2 α⋅sin2 α jest stała.

Dla kąta ostrego α spełniony jest warunek tg α = 7 . Wówczas wartość wyrażenia sisinnαα+−-cocossαα- jest równa
A) 4 3 B) 3 4 C) 2 3 D) 3 2

Ukryj Podobne zadania

Jeżeli α jest kątem ostrym oraz  2 tgα = 3 , to wartość wyrażenia -sinα−-7cosα 3cosα− 2sinα jest równa
A) 12 B) − 519- C) − 7 3 D) − 19 5

Jeżeli kąt α jest ostry i tg α = 0,75 , to wartość wyrażenia sinα+2-cosα- cosα− 2sinα jest równa
A) 11 B) − 5,5 C) − 2 D) − 3,5

Jeżeli tg α = 5 , to wartość wyrażenia 5cosα−4sin-α 3sinα− 4cosα jest równa
A) − 1151 B) − 1 C) 15 11 D) 21 11

Jeżeli α jest kątem ostrym oraz  2 tgα = 5 , to wartość wyrażenia 3cosα−-2sinα sinα− 5cosα jest równa
A) − 1213 B) 245 C) − 23 11 D) 5- 24

W okręgu o środku w punkcie B kąt środkowy α i kąt wpisany β oparte są na tym samym łuku wyznaczonym przez punkty A i C leżące na okręgu. Suma miar tych kątów jest równa kątowi prostemu. Wierzchołek kąta β znajduje się w punkcie D . Wynika stąd, że trójkąt
A) ADC jest równoboczny B) ADC jest prostokątny
C) ABC jest równoboczny D) ABC jest prostokątny

Ukryj Podobne zadania

W okręgu o środku w punkcie B kąt środkowy α i kąt wpisany β oparte są na tym samym łuku wyznaczonym przez punkty A i C leżące na okręgu. Suma miar tych kątów jest równa 135∘ . Wierzchołek kąta β znajduje się w punkcie D . Wynika stąd, że trójkąt
A) ADC jest równoboczny B) ADC jest prostokątny
C) ABC jest równoboczny D) ABC jest prostokątny

W okręgu o środku w punkcie B kąt środkowy α i kąt wpisany β oparte są na tym samym łuku wyznaczonym przez punkty A i C leżące na okręgu. Różnica miar tych kątów jest równa 30∘ . Wierzchołek kąta β znajduje się w punkcie D . Wynika stąd, że trójkąt
A) ABC jest równoboczny B) ADC jest prostokątny
C) ADC jest równoboczny D) ABC jest prostokątny

W ostrosłupie prawidłowym czworokątnym krawędź podstawy ma długość 4, wysokość ostrosłupa ma długość 5. Ściana boczna jest nachylona do podstawy pod kątem α takim, że
A) sin α = 5 2 B) tg α = 5 2 C)  2 tg α = 5 D)  5 tg α = 4

Ukryj Podobne zadania

Podstawą ostrosłupa prawidłowego czworokątnego jest kwadrat o boku długości 4. Ściana boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod takim kątem α , że tg α = 3 . Wysokość tego ostrosłupa jest równa
A) 3 B) 6 C)  √ -- 6 2 D) 12

Średnia arytmetyczna ocen Jacka jest równa 3,75, a średnia ocen Karola (liczona z dokładnie tej samej liczby ocen) jest równa 4,25. Średnia ocen obu chłopców jest równa
A) 3,95 B) 4,5 C) 4,0 D) 4,15

Ukryj Podobne zadania

Średnia arytmetyczna ocen Zosi jest równa 2,8, a średnia ocen Basi (liczona z dokładnie tej samej liczby ocen) jest równa 4,4. Średnia ocen obu dziewcząt jest równa
A) 3,6 B) 4,0 C) 3,8 D) 4,15

Spośród liczb dwucyfrowych wybrano bez zwracania dwa razy po jednej liczbie. Oblicz prawdopodobieństwo, że dwa razy wybrano liczbę parzystą.

Ukryj Podobne zadania

Spośród dodatnich liczb dwucyfrowych losujemy kolejno bez zwracania dwie liczby. Oblicz prawdopodobieństwo wylosowania dwóch liczb parzystych.

O zdarzeniach A i B wiadomo, że P (B) = 0,6 , P(A ∪ B) = 0 ,9 oraz P (A ∖ B′) = 0,5 . Oblicz prawdopodobieństwo zdarzenia A .

Podstawą ostrosłupa ABCDS jest prostokąt ABCD o bokach długości |AB | = 7 i |BC | = 14 . Krawędź CS jest prostopadła do podstawy. Najdłuższa krawędź boczna tworzy z podstawą kąt 50∘ . Wykonaj rysunek pomocniczy tego ostrosłupa oraz oblicz jego objętość.

Uzasadnij, że nierówność  2 2 a + b ≥ 2ab − 1 jest prawdziwa dla dowolnych liczb rzeczywistych a i b .

Ukryj Podobne zadania

Wykaż, że dla każdej liczby rzeczywistej a różnej od 0 i każdej liczby rzeczywistej b różnej od 0 spełniona jest nierówność

2a2 − 4ab + 5b2 > 0 .

Wykaż, że dla każdych dwóch różnych liczb rzeczywistych a i b prawdziwa jest nierówność

a(a − 2b) + 2b2 > 0.

Wykaż, że dla każdych dwóch liczb rzeczywistych a i b prawdziwa jest nierówność

b(b − 4a) + 5a2 ≥ 0.
Strona 404 z 462
spinner