Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła podstawowa/Zadania testowe/Prawdopodobieństwo/Różne

Wyszukiwanie zadań

W pojemniku są wyłącznie kule białe, czerwone, niebieskie i żółte. Kul białych jest tyle samo co kul niebieskich, kul czerwonych jest dwa razy więcej niż kul żółtych, a stosunek liczby kul żółtych do liczby kul niebieskich jest równy 4 : 5. Z pojemnika losujemy jedną kulę. Prawdopodobieństwo wylosowania kuli, która nie jest czerwona jest równe
A) 17 22 B) 7 9 C) -4 11 D) 171

W każdym z dwóch pudełek są tylko kule białe i czarne. Prawdopodobieństwo wylosowania kuli czarnej z pierwszego pudełka jest równe 59 . W drugim pudełku jest dwa razy więcej kul białych i trzy razy więcej kul czarnych niż w pierwszym pudełku. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

W pierwszym pudełku są 4 kule białe. PF
Prawdopodobieństwo wylosowania kuli białej z drugiego pudełka jest równe 8- 23 . PF

Z urny, w której jest wyłącznie 18 kul białych i 12 kul czarnych, losujemy 1 kulę.
Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Prawdopodobieństwo wylosowania kuli białej jest równe 3 5 . PF
Prawdopodobieństwo wylosowania kuli czarnej jest mniejsze od 13 PF
Ukryj Podobne zadania

Z urny, w której jest wyłącznie 16 kul białych i 24 kule czarne, losujemy 1 kulę.
Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Prawdopodobieństwo wylosowania kuli białej jest równe 4 5 . PF
Prawdopodobieństwo wylosowania kuli czarnej jest większe od 58 PF

Organizatorzy loterii fantowej przygotowali zestaw losów, w którym były dwa rodzaje losów: niebieskie i zielone. Losów niebieskich było dwa razy mniej niż losów zielonych i upoważniały one do odbioru cenniejszej nagrody. Uczestnicy loterii losowali po jednym losie, który po wylosowaniu był usuwany z zestawu. Pierwszy uczestnik loterii wyciągnął los niebieski, a drugi uczestnik wyciągnął los zielony.
Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Prawdopodobieństwo wyciągnięcia przez trzecią osobę losu niebieskiego jest równe 1 3 . PF
Prawdopodobieństwo wyciągnięcia przez pierwszą osobę losu zielonego było równe 23 . PF

W szufladzie jest 7 par skarpetek białych i 3 pary skarpetek czarnych. Tomek losuje z szuflady po jednej skarpetce i kładzie ją na stół.
Zaznacz P, jeśli zdanie jest prawdziwe, lub zaznacz F – jeśli jest fałszywe.

Prawdopodobieństwo wylosowania czarnej skarpetki jest równe 0,3. PF
Tomek za pierwszym razem nie wylosował czarnej skarpetki. Prawdopodobieństwo, że za drugim razem wylosuje czarną skarpetkę jest większe. PF
Ukryj Podobne zadania

W pudełku było 15 kul białych i 5 czarnych. Dołożono jeszcze 10 kul białych i 20 czarnych. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Przed dołożeniem kul prawdopodobieństwo wylosowania kuli białej było trzy razy większe niż prawdopodobieństwo wylosowania kuli czarnej. PF
Po dołożeniu kul prawdopodobieństwo wylosowania kuli czarnej jest większe niż prawdopodobieństwo wylosowania kuli białej. PF

W pudełku jest 30 kul białych i 20 czarnych. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Jeżeli 10 kul białych zostanie zastąpionych kulami czarnymi, to prawdopodobieństwa wylosowania kuli czarnej i białej będą równe. PF
Jeżeli podwoimy liczbę kul czarnych w pudełku, to prawdopodobieństwo wylosowania kuli czarnej wzrośnie dwukrotnie. PF

W pudełku znajduje się 6 losów, wśród których są 2 losy wygrywające.
Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Prawdopodobieństwo wyciągnięcia losu wygrywającego jest dwukrotnie mniejsze, niż wyciągnięcia losu przegrywającego. PF
Jeśli do pudełka włożymy dodatkowy los wygrywający, to prawdopodobieństwo wygranej wzrośnie. PF

W pudełku było 20 kul białych i 10 czarnych. Dołożono jeszcze 10 kul białych i 15 czarnych. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Przed dołożeniem kul prawdopodobieństwo wylosowania kuli białej było trzy razy większe niż prawdopodobieństwo wylosowania kuli czarnej. PF
Po dołożeniu kul prawdopodobieństwo wylosowania kuli czarnej jest większe niż prawdopodobieństwo wylosowania kuli białej. PF

W szufladzie znajduje się 10 par skarpetek, w tym 3 pary skarpetek czarnych. Tomek losowo wyjmuje po jednej skarpetce z szuflady.
Wybierz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe.

Tomek, aby mieć pewność, że przynajmniej dwie wyjęte skarpetki będą czarne, musi wyjąć co najmniej 16 skarpetek. PF
Tomek za pierwszym razem nie wyjął czarnej skarpetki. Prawdopodobieństwo, że za drugim razem wyjmie czarną skarpetkę, wzrosło. PF

Do pudełka włożono piłki zielone i czerwone. Wszystkich piłek jest 8, a piłek czerwonych jest 6.
Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Prawdopodobieństwo wyciągnięcia czerwonej piłki jest trzy razy większe, niż prawdopodobieństwo wyciągnięcia piłki zielonej. PF
Jeśli z pudełka zabierzemy 2 czerwone piłki, to prawdopodobieństwa wyciągnięcia piłki czerwonej i zielonej będą równe. PF

W pudełku znajduje się 18 losów, wśród których są 2 losy wygrywające.
Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Prawdopodobieństwo wyciągnięcia losu przegrywającego jest dziewięciokrotnie większe, niż wyciągnięcia losu wygrywającego. PF
Jeżeli do pudełka włożymy dwa losy wygrywające to prawdopodobieństwo wygranej wzrośnie o 100%. PF

W kapeluszu znajdują się króliki białe i szare. Królików szarych jest trzy razy więcej niż białych. Prawdopodobieństwo wyciągnięcia z kapelusza królika białego jest równe 28 . Zatem prawdopodobieństwo wyciągnięcia z kapelusza królika szarego jest równe
A) 1 2 B) 1- 12 C) -4 16 D) 3 4

Ukryj Podobne zadania

W woreczku znajdują się piłki białe i szare. Piłek szarych jest trzy razy więcej niż białych. Prawdopodobieństwo wyciągnięcia z woreczka piłki białej jest równe 0,25. Zatem prawdopodobieństwo wyciągnięcia z woreczka piłki szarej jest równe
A) 0,75 B) 1 3 C) 0,25 D) 0,8

W kapeluszu znajdują się króliki białe i szare. Prawdopodobieństwo wyciągnięcia z kapelusza królika szarego jest równe 47 . Zatem prawdopodobieństwo wyciągnięcia z kapelusza królika białego jest równe
A) 4 7 B) 0,75 C) 7 9 D) 3 7

W pudełku znajduje się 30 losów loterii. 5 z tych losów jest wygrywających, 10 jest przegrywających, a wyciągnięcie jednego z pozostałych upoważnia do wyciągnięcia jeszcze jednego losu. Po wyciągnięciu los nie jest zwracany do pudełka. Pierwsza osoba, która brała udział w tej loterii, wyciągnęła los przegrywający.
Czy podane zdania są prawdziwe (P), czy fałszywe (F)?

Prawdopodobieństwo wyciągnięcia przez drugą osobę losu wygrywającego wzrosło. PF
Prawdopodobieństwo wyciągnięcia przez drugą osobę losu przegrywającego zmalało. PF
Prawdopodobieństwo wyciągnięcia przez drugą osobę losu upoważniającego do ponownego losowania nie zmieniło się. PF

Na rysunku przedstawiono liczbę i rodzaj kul umieszczonych w każdym z czterech pudełek. Z każdego pudełka losujemy jedną kulę.


PIC


Prawdopodobieństwo wylosowania białej kuli jest największe, gdy kulę losujemy z pudełka
A) 1 B) 2 C) 3 D) 4

Ukryj Podobne zadania

W tabeli przedstawiono liczbę i rodzaj kul umieszczonych w czterech pudełkach. Z każdego pudełka losujemy jedną kulę.

Liczba kul
zielonych
Liczba kul
niebieskich
Liczba kul
czerwonych
Pudełko nr 1 4 8 5
Pudełko nr 2 7 16 9
Pudełko nr 3 2 7 3
Pudełko nr 4 7 12 5

Prawdopodobieństwo wylosowania niebieskiej kuli jest największe, gdy kulę losujemy z pudełka nr
A) 1 B) 2 C) 3 D) 4

Organizatorzy konkursu matematycznego przygotowali zestaw, w którym było 10 pytań z algebry i 8 pytań z geometrii. Uczestnicy konkursu losowali kolejno po jednym pytaniu, które po wylosowaniu było usuwane z zestawu. Pierwszy uczestnik wylosował pytanie z algebry.
Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Prawdopodobieństwo wyciągnięcia przez drugą osobę pytania z algebry jest równe -9 17 . PF
Prawdopodobieństwo wyciągnięcia przez drugą osobę pytania z geometrii się nie zmieniło. PF
Ukryj Podobne zadania

Organizatorzy konkursu z języka polskiego przygotowali zestaw, w którym było 15 pytań z gramatyki i 7 pytań z ortografii. Uczestnicy konkursu losowali kolejno po jednym pytaniu, które po wylosowaniu było usuwane z zestawu. Pierwszy uczestnik wylosował pytanie z gramatyki.
Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Prawdopodobieństwo wyciągnięcia przez drugą osobę pytania z ortografii zwiększyło się. PF
Prawdopodobieństwo wyciągnięcia przez drugą osobę pytania z gramatyki jest równe 2 3 . PF

W pudełku znajduje się 14 par skarpetek, w tym 8 par skarpetek czerwonych i 6 par skarpetek niebieskich. Ania losowo wybiera z pojemnika 14 skarpetek. Prawdopodobieństwo, że Ania wybrała co najmniej dwie skarpetki czerwone jest równe
A) 1 B) -6 14 C) 8- 14 D) 6 8

Strona 2 z 2
spinner