Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła podstawowa/Zadania testowe/Prawdopodobieństwo

Wyszukiwanie zadań

W pierwszym pudełku jest 6 kul zielonych i 9 czerwonych, a w drugim są 4 kule zielone i 6 czarnych. Losujemy po jednej kuli z każdego z pudełek. Czy prawdziwe jest stwierdzenie, że prawdopodobieństwo wylosowania zielonej kuli z pierwszego pudełka jest większe, niż prawdopodobieństwo wylosowania zielonej kuli z drugiego pudełka? Wybierz odpowiedź T albo N i jej uzasadnienie spośród A, B albo C.

TakNie
ponieważ
A) w pierwszym pudełku jest więcej kul zielonych niż w drugim pudełku.
B) w każdym z pudełek kule zielone stanowią taki sam procent pozostałych kul.
C) w pierwszym pudełku jest tyle samo kul zielonych, ile jest kul czarnych w drugim pudełku.
Ukryj Podobne zadania

Na festyn przygotowano loterię, w której było 255 losów, w tym 85 wygrywających. Przed rozpoczęciem festynu dołożono jeszcze 30 losów wygrywających i 60 przegrywających. Czy prawdopodobieństwo wyciągnięcia losu wygrywającego w tej loterii zmieniło się po dołożeniu losów? Wybierz odpowiedź T albo N i jej uzasadnienie spośród A, B albo C.

TakNie
ponieważ
A) różnica liczby losów wygrywających i przegrywających po dołożeniu losów nie jest taka sama jak na początku.
B) dołożono więcej losów przegrywających niż wygrywających.
C) nie zmienił się stosunek liczby losów wygrywających do liczby wszystkich losów.

Na festyn przygotowano loterię, w której było 120 losów, w tym 80 wygrywających. Przed rozpoczęciem festynu dołożono jeszcze 20 losów wygrywających i 20 przegrywających. Czy prawdopodobieństwo wyciągnięcia losu wygrywającego w tej loterii zmieniło się po dołożeniu losów? Wybierz odpowiedź T albo N i jej uzasadnienie spośród A, B albo C.

TakNie
ponieważ
A) różnica liczby losów wygrywających i przegrywających po dołożeniu losów jest taka sama jak na początku.
B) dołożono tyle samo losów wygrywających co przegrywających.
C) zmienił się stosunek liczby losów wygrywających do liczby wszystkich losów.

Ze zbioru kolejnych liczb naturalnych {1,2,3 ,4,...,30} losujemy jedną liczbę. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest kwadratem liczby całkowitej, jest równe
A) -4 30 B) 5- 30 C) -6 30 D) 10 30

Ukryj Podobne zadania

Ze zbioru kolejnych liczb naturalnych {1,2,3 ,4,...,40} losujemy jedną liczbę. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest kwadratem liczby całkowitej, jest równe
A) -7 40 B) 5- 40 C) -6 40 D) 10 40

Ze zbioru kolejnych liczb naturalnych {1,2,3 ,4,...,25} losujemy jedną liczbę. Prawdopodobieństwo wylosowania liczby, która jest kwadratem liczby całkowitej, jest równe
A) -7 25 B) 6- 25 C) -5 25 D) -4 25

Na loterii jest 10 losów, z których 4 są wygrywające. Kupujemy jeden los. Prawdopodobieństwo zdarzenia, że nie wygramy nagrody, jest równe
A) 5 6 B) 2 3 C) 1 6 D) 3 5

Ukryj Podobne zadania

Na loterii jest 12 losów, z których 8 jest przegrywających. Kupujemy jeden los. Prawdopodobieństwo zdarzenia, że wygramy nagrodę jest równe
A) 1 3 B) 2 3 C) 3 4 D) 1 6

W pudełku jest 50 kuponów, wśród których jest 15 kuponów przegrywających, a pozostałe kupony są wygrywające. Z tego pudełka w sposób losowy wyciągamy jeden kupon. Prawdopodobieństwo zdarzenia polegającego na tym, że wyciągniemy kupon wygrywający, jest równe
A) 15 35 B) 1- 50 C) 15 50 D) 35 50

Na loterii jest 20 losów, z których 8 jest wygrywających. Kupujemy jeden los. Prawdopodobieństwo zdarzenia, że nie wygramy nagrody jest równe
A) 5 6 B) 3 5 C) 1 6 D) 2 3

Na loterii jest 14 losów, z których 6 jest wygrywających. Kupujemy jeden los. Prawdopodobieństwo zdarzenia, że nie wygramy nagrody jest równe
A) 3 7 B) 4 7 C) 7 8 D) 3 4

W pudełku są tylko kule białe i czarne, przy czym kul czarnych jest o 5 więcej niż kul białych, a prawdopodobieństwo wylosowania kuli białej jest dwa razy mniejsze, niż prawdopodobieństwo wylosowania kuli czarnej. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

W pudełku jest więcej niż 12 kul. PF
Po dołożeniu do pudełka 3 kul czarnych, prawdopodobieństwo wylosowania kuli białej będzie 3 razy mniejsze niż prawdopodobieństwo wylosowania kuli czarnej. PF

W pewnej klasie stosunek liczby dziewcząt do liczby chłopców jest równy 4:5. Losujemy jedną osobę z tej klasy. Prawdopodobieństwo tego, że będzie to dziewczyna, jest równe
A) 4 5 B) 4 9 C) 1 4 D) 1 9

Na dwudziestu karteczkach napisano wszystkie liczby naturalne od 1 do 20 (na każdej karteczce napisano jedną liczbę). Spośród tych karteczek wybieramy w sposób losowy jedną. Niech p 2,p3,p4,p5,p 6,p7,p8 oznaczają prawdopodobieństwa, że na wylosowanej karteczce jest napisana liczba podzielna odpowiednio przez 2, 3, 4, 5, 6, 7, 8.
Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Liczba p8 jest mniejsza od każdej z liczb: p2,p 3,p4,p5,p6,p 7 . PF
Liczba p2 nie jest największą spośród liczb p 2,p3,p4,p5,p 6,p 7,p8 .PF

W pudełku znajduje się 30 losów, w tym 5 losów wygrywających i 25 losów przegrywających. Po wyciągnięciu los nie jest zwracany do pudełka. Ania wybrała pięć losów i wszystkie były przegrywające. Po Ani jeden los wyciągnął Kuba.
Jakie jest prawdopodobieństwo, że Kuba wyciągnął los przegrywający?
A) 23 B) 45 C) 13 D) 5 6

Ukryj Podobne zadania

W pudełku znajdowały się piłeczki białe i czarne – łącznie 72. Wśród wszystkich piłeczek 14 stanowiły piłeczki czarne. Wyciągnięto 12 piłeczek, wśród których żadna nie była czarna. Bartek – jako trzynasty – losuje jedną piłeczkę. Prawdopodobieństwo wylosowania przez Bartka piłeczki czarnej wynosi
A) 1 4 B) 1 3 C) -3 10 D) 37

W pudełku znajdowały się piłeczki niebieskie i czerwone – łącznie 96. Wśród wszystkich piłeczek 16 stanowiły piłeczki czerwone. Wyciągnięto 16 piłeczek, wśród których żadna nie była czerwona. Kasia – jako siedemnasta – losuje jedną piłeczkę. Prawdopodobieństwo wylosowania przez Kasię piłeczki czerwonej wynosi
A) 1 4 B) 8- 17 C) -7 16 D) 15

W pudełku było wyłącznie 216 kulek zielonych i 57 kulek niebieskich. Do tego pudełka dołożono pewną liczbę kulek niebieskich, a następnie usunięto tyle kulek zielonych, ile było kulek niebieskich w pudełku. Po tych zmianach prawdopodobieństwo wylosowania kulki niebieskiej jest równe 2 3 . Ile kulek zielonych usunięto z pudełka?
A) 87 B) 29 C) 144 D) 58

W pewnej loterii przygotowano 20 losów wygrywających i pewną liczbę losów przegrywających. W trakcie losowania wyciągnięto 20 losów i wszystkie były przegrywające. Po wyciągnięciu tych 20 losów prawdopodobieństwo wyciągnięcia losu wygrywającego wzrosło do 1 5 . Na loterię przygotowano A/B losów przegrywających.
A) 80 B) 100
Wyciągnięto kolejnych 10 losów przegrywających. Zatem prawdopodobieństwo wyciągnięcia losu wygrywającego wzrosło do C/D.
C) 2 5 D) 2 9

Ze zbioru {1,2,3,4,5,6,7,8 ,9,10,11} losujemy jedną liczbę. Prawdopodobieństwo wylosowania liczby pierwszej jest równe
A) 141 B) 511- C) 161 D) -9 22

Ukryj Podobne zadania

Ze zbioru liczb {1 ,2,3,4,5,6,7,8,9,10 } losujemy jedną liczbę. Prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczby pierwszej jest równe
A) 0,5 B) 0,6 C) 0,4 D) 0,8

Ze zbioru {1,2,3,4,5,6 ,7,8,9,10,11,12 ,13} losujemy jedną liczbę. Prawdopodobieństwo wylosowania liczby pierwszej jest równe
A) 143 B) 513- C) 163 D) -5 26

Ściany sześciennej kostki ponumerowano liczbami od 1 do 6. Następnie w sposób losowy wybrano jedną z krawędzi tego sześcianu. Prawdopodobieństwo zdarzenia polegające na tym, że wylosowana krawędź jest krawędzią ściany z numerem 6 jest równe
A) -1 12 B) 1 6 C) 1 3 D) 14

W pudełku było wyłącznie 6 kulek zielonych i 8 kulek niebieskich. Po dołożeniu do tego pudełka pewnej liczby kulek zielonych prawdopodobieństwo wylosowania kulki niebieskiej jest równe 14 . Ile kulek zielonych dołożono do pudełka?
A) 10 B) 16 C) 18 D) 24

Ukryj Podobne zadania

W pudełku było wyłącznie 9 kulek zielonych i 6 kulek niebieskich. Po dołożeniu do tego pudełka pewnej liczby kulek zielonych prawdopodobieństwo wylosowania kulki niebieskiej jest równe 14 . Ile kulek zielonych dołożono do pudełka?
A) 10 B) 9 C) 18 D) 6

W pewnej loterii wśród 150 losów co szósty był wygrywający, a pozostałe losy były puste. Wyciągnięto 30 losów i żaden z nich nie był wygrywający. Na loterię przygotowano A/B losów wygrywających.
A) 120 B) 25
Wyciągnięto jeszcze jeden los. Prawdopodobieństwo tego, że będzie to los wygrywający, wynosi C/D.
C) 12520 D) 21525-

Ukryj Podobne zadania

W pewnej loterii wśród 180 losów co dziewiąty był wygrywający, a pozostałe losy były puste. Wyciągnięto 40 losów i żaden z nich nie był wygrywający. Na loterię przygotowano A/B losów wygrywających.
A) 20 B) 140
Wyciągnięto jeszcze jeden los. Prawdopodobieństwo tego, że będzie to los wygrywający, wynosi C/D.
C) 12040 D) 21060-

W pewnej grupie przyjaciół co czwarta osoba ma na imię Kuba. Losujemy jedną osobę z tej grupy. Prawdopodobieństwo tego, że wylosowana osoba nie ma na imię Kuba, jest równe
A) 1 4 B) 3 4 C) 3 5 D) 4 5

W pudełku są trzy rodzaje piłek: czerwone, niebieskie i zielone. Czerwonych piłek jest trzy razy więcej niż niebieskich, a zielonych jest dwa razy mniej niż czerwonych. Losujemy jedną piłkę. Prawdopodobieństwo, że wylosujemy piłkę zieloną, jest równe
A) -2 11 B) 3- 11 C) -6 11 D)  4 11

W pudełku znajdowały się piłeczki białe i czarne. Wśród wszystkich piłeczek 14 stanowiły piłeczki czarne. Wyciągnięto 12 piłeczek, wśród których żadna nie była czarna. Kamil – jako trzynasty – losuje jedną piłeczkę. Prawdopodobieństwo wylosowania przez Kamila piłeczki czarnej wynosi 3- 10 . Liczba wszystkich piłeczek czarnych, które początkowo znajdowały się w pudełku jest równa
A) 18 B) 36 C) 24 D) 30

Do gry planszowej używane są dwa bączki o kształtach przedstawionych na rysunkach. Każdy bączek po zatrzymaniu na jednym boku wielokąta wskazuje liczbę umieszczoną na jego tarczy. Na rysunku I bączek ma kształt pięciokąta foremnego z zaznaczonymi liczbami od 1 do 5. Na rysunku II bączek ma kształt sześciokąta foremnego z zaznaczonymi liczbami od 1 do 6.


PIC


Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Prawdopodobieństwo otrzymania liczby większej niż 3 na bączku z rysunku I jest większe niż 1 2 PF
Uzyskanie nieparzystej liczby na bączku z rysunku I jest tak samo prawdopodobne, jak uzyskanie nieparzystej liczby na bączku z rysunku II. PF
Ukryj Podobne zadania

Do gry planszowej używane są dwa bączki o kształtach przedstawionych na rysunkach. Każdy bączek po zatrzymaniu na jednym boku wielokąta wskazuje liczbę umieszczoną na jego tarczy. Na rysunku I bączek ma kształt siedmiokąta foremnego z zaznaczonymi liczbami od 1 do 7. Na rysunku II bączek ma kształt sześciokąta foremnego z zaznaczonymi liczbami od 1 do 6.


PIC


Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Prawdopodobieństwo otrzymania liczby pierwszej na bączku z rysunku I jest większe niż 1 2 PF
Uzyskanie liczby parzystej na bączku z rysunku I jest tak samo prawdopodobne, jak uzyskanie liczby nieparzystej na bączku z rysunku II. PF

W pudełku znajdują się płytki z literami. Na każdej płytce jest wydrukowana jedna litera – spółgłoskowa albo samogłoskowa. Płytek z literami spółgłoskowymi jest o 25% więcej niż płytek z literami samogłoskowymi. Losujemy jedną płytkę. Prawdopodobieństwo wylosowania płytki z literą samogłoskową jest równe
A) 0,75 B) 0,25 C) 4 9 D) 59

Ukryj Podobne zadania

W pudełku znajdują się płytki z literami. Na każdej płytce jest wydrukowana jedna litera – spółgłoskowa albo samogłoskowa. Płytek z literami spółgłoskowymi jest o 40% więcej niż płytek z literami samogłoskowymi. Losujemy jedną płytkę. Prawdopodobieństwo wylosowania płytki z literą samogłoskową jest równe
A) 0,6 B) -5 12 C) 5 7 D) 0,4

Na loterii stosunek liczby losów wygrywających do liczby losów przegrywających jest równy 2 : 7. Zakupiono jeden los z tej loterii. Prawdopodobieństwo zdarzenia polegającego na tym, że zakupiony los jest wygrywający, jest równe
A) 1 9 B) 1 2 C) 2 9 D) 2 7

Ukryj Podobne zadania

Na loterii stosunek liczby losów wygrywających do liczby losów przegrywających jest równy 2 : 7. Zakupiono jeden los z tej loterii. Prawdopodobieństwo zdarzenia polegającego na tym, że zakupiony los jest przegrywający, jest równe
A) 8 9 B) 7 9 C) 1 2 D) 5 7

Do pudełka włożono 48 kul w różnych kolorach. Prawdopodobieństwo wylosowania kuli czerwonej jest równe 16 , a prawdopodobieństwo wylosowania kuli żółtej jest równe 1 2 . Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

W pudełku jest trzy więcej kul czerwonych niż żółtych.PF
W pudełku może być 16 kul zielonych. PF
Strona 1 z 3
spinner