Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Trójkąt

Wyszukiwanie zadań

Dwusieczne kątów A i B trójkąta ABC przecinają okrąg opisany na nim odpowiednio w punktach K i L . Oblicz miary kątów czworokąta ABKL wiedząc, że |∡A | = 60∘ i |∡B | = 40∘ .

W trójkącie ostrokątnym ABC prawdziwa jest równość  2 2 |BC | − |AC | = |AB |⋅|AC | . Wykaż, że kąt BAC jest dwa razy większy od kąta ABC .

W trójkąt równoramienny wpisano kwadrat w ten sposób, że dwa jego wierzchołki leżą na podstawie trójkąta, a dwa pozostałe są środkami ramion. Jaką część pola trójkąta stanowi pole kwadratu? Odpowiedź uzasadnij.

Wykaż, że jeżeli w trójkącie dwusieczna pokrywa się ze środkową, to trójkąt ten jest równoramienny.

Wyraź pole trójkąta w zależności od długości jednego z jego boków i miar kątów doń przyległych.

W trójkącie ABC punkt S jest środkiem okręgu wpisanego, a punkty KLM są punktami styczności okręgu wpisanego w trójkąt z bokami BC ,CA i AB odpowiednio.

  • Uzasadnij, że na czworokącie AMSL można opisać okrąg.
  • Wiedząc, że  ∘ |∡CAB | = 3 8 oraz  ∘ |∡ABC | = 5 8 oblicz miary kątów trójkąta KLM .

Wykaż, że jeżeli α,β ,γ są kątami trójkąta, to

 α β γ sinα + sin β + sin γ = 4co s--cos --cos -. 2 2 2

Punkty M i L leżą odpowiednio na bokach AB i AC trójkąta ABC , przy czym zachodzą równości |MB | = 2|AM | oraz |LC | = 3 |AL | . Punkt S jest punktem przecięcia odcinków BL i CM . Punkt K jest punktem przecięcia półprostej AS z odcinkiem BC (zobacz rysunek).


PIC


Pole trójkąta ABC jest równe 660. Oblicz pola trójkątów: AMS ,ALS ,BMS i CLS .

Ukryj Podobne zadania

Punkty M i L leżą odpowiednio na bokach AB i AC trójkąta ABC , przy czym zachodzą równości |MB | = 3|AM | oraz |LC | = 2 |AL | . Punkt S jest punktem przecięcia odcinków BL i CM . Punkt K jest punktem przecięcia półprostej AS z odcinkiem BC (zobacz rysunek).


PIC


Pole trójkąta ABC jest równe 528. Oblicz pola trójkątów: AMS ,ALS ,BMS i CLS .

W trójkącie ABC środkowa AD jest prostopadła do boku AC . Kąt BAC ma miarę 120∘ . Wykaż, że |AB | = 2|AC | .

Na boku AB trójkąta ABC wybrano punkt D , a na odcinku CD wybrano punkt E . Wykaż, że stosunek pól trójkątów AEC i BEC jest równy stosunkowi pól trójkątów ADC i BDC .


PIC


Przez środek D przyprostokątnej BC trójkąta prostokątnego ABC poprowadzono prostą prostopadłą do przeciwprostokątnej AB . Prosta ta przecina proste AB i AC odpowiednio w punktach M i N . Wykaż, że |BC |2 = 4⋅ |DN |⋅ |DM | .


PIC


Ukryj Podobne zadania

Przez środek D przyprostokątnej BC trójkąta prostokątnego ABC poprowadzono prostą prostopadłą do przeciwprostokątnej AB . Prosta ta przecina proste AB i AC odpowiednio w punktach M i N . Wykaż, że skala podobieństwa trójkątów ABC i ANM jest równa -2cosα- 1+cos2α .


PIC


Środkowa AD trójkąta ABC ma długość równą połowie długości boku BC oraz |BC | ≤ 2 . Wykaż, że |AB | ⋅|AC | ≤ 2 .

Dany jest trójkąt rozwartokątny ABC , w którym ∡ACB ma miarę  ∘ 120 . Ponadto wiadomo, że |BC | = 10 i  √ -- |AB | = 10 7 (zobacz rysunek). Oblicz długość trzeciego boku trójkąta ABC .


PIC


Ukryj Podobne zadania

Dany jest trójkąt ABC , w którym  ∘ |∡CAB | + |∡CBA | = 12 0 . Ponadto wiadomo, że |BC | = 8 i  √ --- |AB | = 2 21 (zobacz rysunek). Oblicz długość trzeciego boku trójkąta ABC .


PIC


Dany jest trójkąt rozwartokątny ABC , w którym ∡ACB ma miarę  ∘ 120 . Ponadto wiadomo, że |BC | = 3 i  √ -- |AB | = 3 7 (zobacz rysunek). Oblicz długość trzeciego boku trójkąta ABC .


PIC


Podstawa AB trójkąta równoramiennego ABC ma długość 4, a ramiona mają długość 8.

  • Oblicz długość promienia okręgu wpisanego w ten trójkąt.
  • Oblicz dlugość promienia okręgu opisanego na tym trójkącie.

W trójkącie ABC dane są długości boków |AB | = 20 cm ,|AC | = |BC | = 26 cm . Wyznacz długość środkowej BD .

Wiedząc, że boki trójkąta prostokątnego mają długości: 20, 15, 25, wyznacz długość wysokości opuszczonej na przeciwprostokątną.

Ukryj Podobne zadania

Boki trójkąta prostokątnego mają długości 10,24,26. Oblicz długość wysokości opuszczonej na przeciwprostokątną.

Na przyprostokątnych AC i BC trójkąta prostokątnego ABC zbudowano trójkąty równoramienne CDA i BEC w ten sposób, że |AD | = |CD |,|BE | = |CE | oraz punkty DCE leżą na jednej prostej. Wykaż, że proste AD i BE są równoległe.


PIC


Kąty ostre trójkąta ABC o polu S mają miary |∡A | = α , |∡B | = β . Oblicz długości boków AB i BC tego trójkąta.

Promień okręgu wpisanego w trójkąt o bokach 5 i 8 jest równy równy √ -- 3 , a obwód tego trójkąta jest liczbą całkowitą. Oblicz długość trzeciego boku tego trójkąta.

Dwa trójkąty równoboczne mają wspólny środek i boki równoległe. Pole jednego jest 2 razy większe od pola drugiego, a boki mniejszego trójkąta mają długość 1. Jaka jest odległość między równoległymi bokami?

Strona 15 z 24
spinner