Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Funkcje

Wyszukiwanie zadań

Oblicz wartość wyrażenia  2 2 tg α − 3 cos α , jeżeli  √-3 sinα = 2 i α jest kątem ostrym.

Ukryj Podobne zadania

Kąt α jest ostry i  √2- sin α = 2 . Oblicz wartość wyrażenia  2 2 3cos α− 2sin α .

Wyznacz wszystkie wartości parametrów a,b i c , dla których wielomian

 2 3 5 W (x) = 25(x − 2) + a(x + 1) + b (x − 1) + c

jest podzielny przez wielomian  3 2 P (x) = x − 2x − x + 2 .

Ukryj Podobne zadania

Wiedząc, że α jest kątem ostrym i  -1- tgα + tgα = 4 oblicz sin α cosα .

Ukryj Podobne zadania

Wiedząc, że α jest kątem ostrym i  -1- tgα + tgα = 8 oblicz sin α cosα .

Funkcja kwadratowa  2 f(x ) = ax + bx + c ma dwa miejsca zerowe x 1 = − 2 i x2 = 6 . Wykres funkcji f przechodzi przez punkt A = (1,− 5) . Oblicz najmniejszą wartość funkcji f .

Ukryj Podobne zadania

Funkcja kwadratowa  2 f(x ) = ax + bx + c ma dwa miejsca zerowe x 1 = − 6 i x2 = 4 . Wykres funkcji f przechodzi przez punkt A = (−4 ,−4 ) . Oblicz najmniejszą wartość funkcji f .

Parabola, która jest wykresem funkcji kwadratowej  2 f (x) = ax + bx + c , przechodzi przez punkt (2,− 6) oraz f(− 2) = f (4) = 10 . Oblicz odległość wierzchołka tej paraboli od początku układu współrzędnych.

Wykresem funkcji kwadratowej f określonej wzorem  2 f(x) = x + bx+ c jest parabola, na której leży punkt A = (0,− 5) . Osią symetrii tej paraboli jest prosta o równaniu x = 7 . Oblicz wartości współczynników b i c .

Ukryj Podobne zadania

Osią symetrii wykresu funkcji kwadratowej  2 f(x) = x + bx+ c jest prosta o równaniu x = − 2 . Jednym z miejsc zerowych funkcji f jest liczba 1. Oblicz współczynniki b oraz c .

Wykresem funkcji kwadratowej f określonej wzorem  2 f(x) = x + bx+ c jest parabola, na której leży punkt A = (0,− 4) . Osią symetrii tej paraboli jest prosta o równaniu x = 6 . Oblicz wartości współczynników b i c .

Wielomian W (x) stopnia 3 jest podzielny przez trójmian kwadratowy P (x) = x2 − x − 72 . Wiadomo ponadto, że 26W (10) + 21W (7) = 0 . Wyznacz miejsca zerowe wielomianu W (x) .

Funkcja  4 2 f(x) = x + ax + b przyjmuje wartość 1 dla czterech argumentów:

 ∘ ----√---- ∘ ----√---- ∘ ----√---- ∘ ----√---- x = ---5+----17, x = − --5-+---1-7, x = --5-−---17-, x = − --5-−---17-. 1 2 2 2 3 2 4 2

Oblicz najmniejszą wartość tej funkcji.

Uzasadnij, że liczba  π- cos 12 jest niewymierna.

Funkcja f jest określona wzorem  -3x- f(x ) = x+1 dla każdego x ∈ (− 1,+ ∞ ) . Wykaż, że f jest funkcją rosnącą.

Reszta z dzielenia wielomianu W (x) przez trójmian kwadratowy P (x) = x2 + 2x − 8 jest równa R (x) = − 5x + 2 . Wyznacz resztę z dzielenia tego wielomianu przez dwumian (x + 4) .

Dana jest rodzina funkcji kwadratowych zmiennej rzeczywistej x , opisana wzorem f(x ) = − 12x2 + ax − 6 , gdzie a jest liczbą rzeczywistą.

  • Dla a = 1 wyznacz zbiór tych argumentów, dla których funkcja f przyjmuje wartości większe niż funkcja liniowa g(x) = x − 8 .
  • Wyznacz liczbę a , dla której zbiorem wartości funkcji f jest przedział (− ∞ ,0⟩ .
  • Dla a = 4 napisz wzór funkcji f w postaci kanonicznej i narysuj jej wykres.

Oblicz granicę jednostronną funkcji  --x3+-64-- x→lim−4− x2+8x+16 .

Ukryj Podobne zadania

Oblicz granicę jednostronną funkcji  --x3+-64-- x→lim−4+ x2+8x+16 .

Dla jakich wartości parametru k reszta z dzielenia wielomianu W (x) = x5 + (k3 + 3k2)x3 − 2(k2 + 2k)x − k przez dwumian x− 1 jest nie większa od (–2)?

Dana jest funkcja f określona wzorem  5−4x- f(x) = 3+ 2x2 dla każdej liczby rzeczywistej x , oraz dwie liczby: 0 > a > b > − 1 2 . Oblicz wartość wyrażenia

 f (a) f(b) |f(b)-−-f(a)| − |f(a)-−-f(b-)|.

Funkcja f określona jest wzorem  2 f(x ) = (3m − 5 )x − (2m − 1)x + 0 ,25(3m − 5) . Wyznacz te wartości parametru m ∈ R , dla których najmniejsza wartość funkcji f jest liczbą dodatnią.

Strona 6 z 20
spinner