Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria/Zadania na ekstrema

Wyszukiwanie zadań

Na półkuli o promieniu R opisano stożek w ten sposób, że środek podstawy stożka pokrywa się ze środkiem kuli. Jaka jest najmniejsza możliwa objętość tego stożka?

Spodek wysokości ostrosłupa ABCDS pokrywa się ze środkiem rombu ABCD w jego podstawie oraz |BD | = 2|AC | , |AS |2 + |AD |2 = 4 . Oblicz objętość ostrosłupa ABCDS jeżeli wiadomo, że pole trójkąta BDS jest największe możliwe.

Tekturowy karton ma mieć kształt prostopadłościanu, którego podstawa jest prostokątem o jednym z boków dłuższym od drugiego o 24 cm. Suma wszystkich krawędzi tego prostopadłościanu ma być równa 480 cm.

  • Napisz wzór funkcji P wyrażającej całkowite pole zewnętrznej powierzchni kartonu, w zależności od długości x krótszej krawędzi jego podstawy. Podaj dziedzinę funkcji P .

  • Oblicz jakie powinny być wymiary tego kartonu tak, aby łączne pole powierzchni jego ścian było największe możliwe.

Suma długości wysokości i długości jednej krawędzi podstawy graniastosłupa prawidłowego czworokątnego jest równa 2. Jaką najmniejszą długość może mieć przekątna takiego graniastosłupa.

Rozpatrujemy wszystkie możliwe drewniane szkielety o kształcie przedstawionym na rysunku, wykonane z listewek. Każda z tych listewek ma kształt prostopadłościanu o podstawie kwadratu o boku długości x . Wymiary szkieletu zaznaczono na rysunku.


PIC


  • Wyznacz objętość V drewna potrzebnego do budowy szkieletu jako funkcję zmiennej x .
  • Wyznacz dziedzinę funkcji V .
  • Oblicz tę wartość x , dla której zbudowany szkielet jest możliwie najcięższy, czyli kiedy funkcja V osiąga wartość największą. Oblicz tę największą objętość.
Ukryj Podobne zadania

Rozpatrujemy wszystkie możliwe drewniane szkielety o kształcie przedstawionym na rysunku, wykonane z listewek. Każda z tych listewek ma kształt prostopadłościanu o podstawie kwadratu o boku długości x . Wymiary szkieletu zaznaczono na rysunku.


PIC


  • Wyznacz objętość V drewna potrzebnego do budowy szkieletu jako funkcję zmiennej x .
  • Wyznacz dziedzinę funkcji V .
  • Oblicz tę wartość x , dla której zbudowany szkielet jest możliwie najcięższy, czyli kiedy funkcja V osiąga wartość największą. Oblicz tę największą objętość.

W ostrosłup prawidłowy czworokątny o wysokości H wpisano sześcian tak, że cztery jego wierzchołki należą do krawędzi bocznych ostrosłupa, a cztery pozostałe należą do płaszczyzny jego podstawy. Oblicz dla jakiej długości krawędzi podstawy ostrosłupa stosunek objętości ostrosłupa do objętości sześcianu jest najmniejszy możliwy.

Podstawą ostrosłupa jest trójkąt prostokątny, w którym tangens jednego z kątów ostrych jest równy m > 0 . Wszystkie krawędzie boczne ostrosłupa mają długość b > 0 . Jakie powinno być pole podstawy ostrosłupa, aby jego objętość była największa? Oblicz tę największą objętość.

Rozpatrujemy wszystkie stożki, których pole powierzchni całkowitej jest równe P . Oblicz wysokość i promień podstawy tego stożka, który ma największą objętość. Podaj tę największą objętość.

Rozpatrujemy wszystkie walce, których pole powierzchni całkowitej jest równe 12 π . Wyznacz wysokość tego spośród rozpatrywanych walców, którego objętość jest największa. Oblicz tę objętość.

Ukryj Podobne zadania

Rozpatrujemy wszystkie walce, których pole powierzchni całkowitej jest równe 2π . Oblicz promień podstawy tego walca, który ma największą objętość. Podaj tę największą objętość.

Rozważamy wszystkie graniastosłupy prawidłowe trójkątne o objętości 3456, których krawędź podstawy ma długość nie większą niż  √ -- 8 3 .

  • Wykaż, że pole P powierzchni całkowitej graniastosłupa w zależności od długości a krawędzi podstawy graniastosłupa jest określone wzorem

     √ -- √ -- a2-⋅--3 138-24--3 P (a) = 2 + a .
  • Wyznacz długość krawędzi podstawy tego z rozważanych graniastosłupów, którego pole powierzchni całkowitej jest najmniejsze. Oblicz to najmniejsze pole.

Z papierowego koła o promieniu R wycięto wycinek kołowy, który jest powierzchnią boczną stożka o maksymalnej objętości. Jaka była miara kąta środkowego α wyciętego wycinka? Wynik podaj w radianach.


PIC


Rozpatrujemy wszystkie stożki, których pole powierzchni całkowitej jest równe 3π . Oblicz promień podstawy tego stożka, który ma największą objętość. Podaj tę największą objętość.

W kulę o promieniu długości R wpisano walec o największej objętości. Wyznacz stosunek objętości kuli do objętości tego walca.

Ukryj Podobne zadania

W kulę o promieniu długości R wpisano stożek o maksymalnej objętości. Oblicz objętość tego stożka.

W stożek o promieniu r i wysokości h wpisujemy graniastosłupy sześciokątne prawidłowe tak, że jedna podstawa jest zawarta w podstawie stożka, a pozostałe wierzchołki należą do powierzchni bocznej stożka. Podaj wymiary graniastosłupa o największym polu powierzchni bocznej.

Podstawą ostrosłupa ABCDS jest prostokąt o obwodzie 6. Krawędź DS jest wysokością ostrosłupa i jest 3 razy dłuższa od krawędzi DA . Jakie największe pole może mieć przekrój ostrosłupa płaszczyzną wyznaczoną przez wierzchołki C,D i środek krawędzi AS ?

Spośród tych graniastosłupów prawidłowych trójkątnych, których suma długości wszystkich krawędzi jest równa 18, wybierz graniastosłup o największej objętości. Oblicz tę maksymalną objętość.

Ukryj Podobne zadania

Suma długości wszystkich krawędzi graniastosłupa prawidłowego sześciokątnego jest równa 36. Jakie są wymiary graniastosłupa o największej objętości?

Puszka konserwy ma kształt walca. Jaką wysokość i jaki promień podstawy powinna mieć ta puszka, aby przy objętości puszki 250π cm 3 zużyć jak najmniej materiału na jej wykonanie.

Dany jest zbiór wszystkich graniastosłupów prawidłowych sześciokątnych, których suma długości wszystkich krawędzi jest równa 216. Oblicz długość krawędzi podstawy i wysokość tego z danych graniastosłupów, który ma największe pole powierzchni bocznej.

Dany jest graniastosłup prawidłowy czworokątny, którego suma długości wszystkich krawędzi wynosi 12.

  • Napisz wzór funkcji P wyrażającej pole powierzchni całkowitej graniastosłupa, w zależności od długości krawędzi podstawy x . Podaj dziedzinę funkcji P .
  • Wyznacz długości krawędzi graniastosłupa, dla których pole powierzchni całkowitej jest największe.
Strona 3 z 3
spinner