Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Czworokąt/Trapez/Dowolny

Wyszukiwanie zadań

W trapezie ABCD punkt E jest środkiem ramienia BC . Z wierzchołka D poprowadzono prostą przecinającą ramię BC w punkcie E . Proste AB i DE przecinają się w punkcie F (zobacz rysunek). Wykaż, że |BF | = |CD | .


PIC


Dany jest trapez o podstawach długości a oraz b i wysokości h . Każdą z podstaw tego trapezu wydłużono o 25%, a wysokość skrócono tak, że powstał nowy trapez o takim samym polu. Oblicz, o ile procent skrócono wysokość h trapezu.

Ukryj Podobne zadania

Dany jest trapez o podstawach długości a oraz b i wysokości h . Każdą z podstaw tego trapezu skrócono o 20%, a wysokość wydłużono tak, że powstał nowy trapez o takim samym polu. Oblicz, o ile procent wydłużono wysokość h trapezu.

W trapezie ABCD podstawa AB jest 3 razy dłuższa od podstawy CD . Przekątne tego trapezu przecinają się w punkcie E , a proste zawierające ramiona AD i BC przecinają się w punkcie F . Oblicz stosunek pola czworokąta DECF do pola trapezu ABCD .

Punkt P jest punktem przecięcia przekątnych trapezu ABCD . Długość podstawy CD jest o 2 mniejsza od długości podstawy AB . Promień okręgu opisanego na trójkącie ostrokątnym CP D jest o 3 mniejszy od promienia okręgu opisanego na trójkącie AP B . Wykaż, że spełniony jest warunek  2 2 2 4√ 2 |DP | + |CP | − |CD | = --3-⋅|DP |⋅|CP | .

Dany jest czworokąt ABCD , w którym AB ∥ CD . Na boku BC wybrano taki punkt E , że |EC | = |CD | i |EB | = |BA | . Wykaż, że kąt AED jest prosty.

Prosta k przechodząca przez punkt przecięcia przekątnych trapezu ABCD przecina jego podstawy AB i CD odpowiednio w punktach E i F . Wykaż, że |AE| = |CF|- |EB| |FD | .

Trapez, w którym jedna z podstaw jest dwa razy dłuższa od drugiej, podzielono odcinkiem łączącym środki ramion trapezu na dwa czworokąty. Oblicz stosunek pól otrzymanych czworokątów.

Podstawy trapezu ABCD mają długości |AB | = a i |CD | = b , przy czym a > b . Udowodnij, że odcinek łączący środki przekątnych tego trapezu ma długość a−b- 2 .

W trapezie ABCD punkt E jest środkiem boku BC oraz |AB | = 2|CD | . Z wierzchołka D poprowadzono prostą przecinającą bok BC w punkcie E . Proste AB i DE przecinają się w punkcie F (zobacz rysunek).


ZINFO-FIGURE


Wykaż, pole trójkąta BF E jest pięć razy mniejsze od pola czworokąta ABED .

Podstawy trapezu mają długości 9 i 12. Oblicz długość odcinka łączącego środki przekątnych tego trapezu.

Suma miar dwóch sąsiednich kątów trapezu jest równa  ∘ 6 8 , a różnica miar dwóch pozostałych kątów jest równa 1 4∘ . Oblicz miary kątów tego trapezu.

W trapezie ABCD boki nierównoległe AD i BC zawierają się w prostych prostopadłych. Oblicz pole trapezu, mając dane |AD | = a oraz |∡ABC | = |∡DAC | = α < 90∘ .

Połączono ramiona trapezu odcinkiem równoległym do podstaw i dzielącym te ramiona w stosunku 2:3 licząc od krótszej podstawy. Oblicz długość tego odcinka, jeśli wiesz, że podstawy trapezu mają długości a i b , gdzie a > b .

W trapezie ABCD o podstawach AB i CD przekątne AC oraz BD przecinają się w punkcie S . Wykaż, że jeżeli |AS | = 56|AC | , to pole trójkąta ABS jest 25 razy większe od pola trójkąta DCS .

Ukryj Podobne zadania

W trapezie ABCD o podstawach AB i CD przekątne AC oraz BD przecinają się w punkcie S . Wykaż, że jeżeli |AS | = 45|AC | , to pole trójkąta ABS jest 16 razy większe od pola trójkąta DCS .

Wyprowadź wzór na pole trapezu ze wzorów na pole równoległoboku i trójkąta.

W trapezie kąty przy dłuższej podstawie to  ∘ 60 i  ∘ 30 , a długość wysokości trapezu wynosi 6. Oblicz pole trapezu oraz długości jego podstaw wiedząc, że suma długości ramion jest równa sumie długości podstaw.

Podstawy trapezu mają długości 4 i 8. Kąty, jakie tworzą ramiona z dłuższą podstawą, mają miary 30 ∘ i 45∘ . Oblicz pole trapezu.

Ukryj Podobne zadania

W trapezie, którego podstawy mają długości 12 cm i 6 cm, miary kątów przy dłuższej podstawie wynoszą 45∘ i 30∘ . Oblicz pole tego trapezu.

W trapezie, którego podstawy mają długości 10 cm i 4 cm, miary kątów przy dłuższej podstawie wynoszą 45∘ i 30∘ . Oblicz pole tego trapezu.

Podstawy trapezu ABCD mają długości AB = a i CD = b . Na ramionach trapezu wybrano punkty K i L w ten sposób, że odcinek KL jest równoległy do podstaw i przechodzi przez punkt przecięcia przekątnych. Oblicz długość odcinka KL .

W trapezie ABCD (AB ∥ DC ) przekątne AC i BD przecinają się w punkcie P . Wykaż, że pole trójkąta AP D jest równe polu trójkąta P BC .


PIC


Dany jest trapez, w którym podstawy mają długość 4 cm i 10 cm oraz ramiona tworzą z dłuższą podstawą kąty o miarach 30∘ i 45 ∘ . Oblicz wysokość tego trapezu.

Ukryj Podobne zadania

Dany jest trapez, w którym podstawy mają długość 6 cm i 20 cm oraz ramiona tworzą z dłuższą podstawą kąty o miarach 30∘ i 45 ∘ . Oblicz wysokość tego trapezu.

Strona 3 z 4
spinner