Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Każde dwa spośród trzech okręgów są zewnętrznie styczne. Oblicz promienie tych okręgów, jeśli wiadomo, że odległości między ich środkami wynoszą 8, 11, 13.

W półkole o średnicy AB wpisano okrąg styczny do średnicy AB w jej środku. Znajdź promień okręgu stycznego jednocześnie do półokręgu AB , do wpisanego okręgu oraz do średnicy AB jeżeli |AB | = 2R .

Okręgi o1 i o2 są styczne zewnętrznie oraz oba są styczne wewnętrznie do okręgu o3 . Środki wszystkich trzech okręgów leżą na jednej prostej, a cięciwa EF okręgu o3 jest wspólną styczną okręgów o1 i o2 . Oblicz długość odcinka EF jeżeli promienie okręgów o 1 i o 2 są odpowiednio równe r 1 i r 2 .


PIC


*Ukryj

Na średnicy AB półokręgu o3 wybrano punkt C i na odcinkach AC i CB jako na średnicach skonstruowano półokręgi o1 i o2 . Odcinek CD jest odcinkiem wspólnej stycznej półokręgów o1 i o2 . Oblicz długość odcinka CD jeżeli promienie półokręgów o 1 i o 2 są odpowiednio równe r 1 i r 2 .


PIC


Dwa styczne zewnętrznie okręgi o środkach A i B są styczne wewnętrznie do okręgu o(C ,4) , przy czym punkty A ,B,C nie są współliniowe. Oblicz obwód trójkąta ABC .

*Ukryj

Dane dwa okręgi o środkach B i C są styczne zewnętrznie i jednocześnie są styczne wewnętrznie do okręgu o środku w punkcie A . Wiedząc, że |BC | = |AC | oraz promień okręgu o środku C ma długość rc = 3 oblicz długość odcinka AB .


PIC


Dane są dwa okręgi zewnętrznie styczne oraz styczne wewnętrznie do trzeciego. Środki okręgów tworzą trójkąt równoramienny o bokach długości 1 i 2. Znajdź długości promieni tych okręgów (rozważ dwa przypadki).

Trzy okręgi o promieniach 2, 4 i 6 są parami zewnętrznie styczne. Oblicz długość promienia okręgu zawierającego punkty styczności tych okręgów.

Trzy koła o promieniu 1 są parami styczne zewnętrznie. Oblicz pole obszaru zawartego między tymi kołami.

Dane są okręgi o środkach O1,O 2 oraz promieniu 2. Jeden z nich jest styczny wewnętrznie, a drugi styczny zewnętrznie do okręgu o środku O i promieniu 5. Wiadomo, że |∡O 1OO 2| = 60 ∘ . Oblicz długość odcinka O O 1 2 .

Okręgi o(A ,1) , o(B ,2) i o(C,R ) są parami styczne zewnętrznie. Oblicz R , jeśli ∡BAC = 90∘ .

Dane są trzy okręgi o środkach A ,B ,C i promieniach równych odpowiednio r,2r,3r . Każde dwa z tych okręgów są zewnętrznie styczne: pierwszy z drugim w punkcie K , drugi z trzecim w punkcie L i trzeci z pierwszym w punkcie M . Oblicz stosunek pola trójkąta KLM do pola trójkąta ABC .