Punkty leżą na okręgu o środku (zobacz rysunek). Miara zaznaczonego kąta jest równa
A) B) C) D)
Punkty leżą na okręgu o środku (zobacz rysunek). Miara zaznaczonego kąta jest równa
A) B) C) D)
Punkty leżą na okręgu o środku (zobacz rysunek). Miara zaznaczonego kąta jest równa
A) B) C) D)
Liczby całkowite ujemne spełniające nierówność to
A) B)
C) D)
Liczby całkowite ujemne spełniające nierówność to
A) B)
C) D)
Liczby całkowite ujemne spełniające nierówność to
A) B)
C) D)
Punkty i leżą na okręgu o środku . Miary kątów , , są równe odpowiednio: , , (zobacz rysunek).
Wynika stąd, że miara kąta jest równa
A) B) C) D)
Punkty i leżą na okręgu o środku . Miary kątów , , są równe odpowiednio: , , (zobacz rysunek).
Wynika stąd, że miara kąta jest równa
A) B) C) D)
Punkty i leżą na okręgu o środku . Miary kątów , , są równe odpowiednio: , , (zobacz rysunek).
Wynika stąd, że miara kąta jest równa
A) B) C) D)
Wskaż równanie okręgu opisanego na trójkącie o wierzchołkach , ,
A) B)
C) D)
Wielomian jest równy iloczynowi
A) B) C) D)
Wielomian jest równy iloczynowi
A) B) C) D)
Kostka mydła ma kształt prostopadłościanu. Załóżmy, że po tygodniu używania każdy z wymiarów kostki zmniejszył się o połowę. Pozostała ilość mydła (przy takim samym użytkowaniu) wystarczy na
A) 1 dzień B) 2 dni C) 5 dni D) 7 dni
Przekątna graniastosłupa prawidłowego czworokątnego, w którym wysokość jest 2 razy dłuższa od krawędzi podstawy, jest równa 6. Wynika stąd, że objętość tego graniastosłupa jest równa
A) B) C) D)
Średnia arytmetyczna liczb: i jest równa:
A) B) C) D)
Trójkąt prostokątny ma boki długości i kąty ostre . Kąt leży naprzeciw boku długości . Zatem
A) B) C) D)
Trójkąt prostokątny ma boki długości i kąty ostre . Kąt leży naprzeciw boku długości . Zatem
A) B) C) D)
Trójkąt prostokątny ma boki długości i kąty ostre . Kąt leży naprzeciw boku długości 6. Zatem
A) B) C) D)
Kąt jest ostry i . Wtedy wartość wyrażenia jest równa
A) B) C) D)
Okrąg o średnicy 6 jest styczny do osi , a oś jest jego osią symetrii. Środek tego okręgu ma współrzędne
A) B) C) D)
Punkty dzielą okrąg na 4 równe łuki. Miara zaznaczonego na rysunku kąta wpisanego jest równa
A) B) C) D)
Dana jest funkcja określona wzorem
Równanie ma dokładnie
A) jedno rozwiązanie. B) dwa rozwiązania. C) cztery rozwiązania. D) pięć rozwiązań.
Dana jest funkcja określona wzorem
Równanie ma dokładnie
A) jedno rozwiązanie. B) dwa rozwiązania. C) cztery rozwiązania. D) pięć rozwiązań.
Dana jest funkcja określona wzorem
Równanie ma dokładnie
A) jedno rozwiązanie. B) dwa rozwiązania. C) trzy rozwiązania. D) cztery rozwiązania.
Dana jest funkcja określona wzorem
Równanie ma dokładnie
A) jedno rozwiązanie. B) dwa rozwiązania. C) trzy rozwiązania. D) cztery rozwiązania.
Liczbą odwrotną do liczby jest liczba:
A) B) C) D)
Liczba wszystkich sposobów utworzenia liczb trzycyfrowych o różnych cyfrach ze zbioru jest równa
A) 120 B) 100 C) 60 D) 60
Wszystkich liczb naturalnych trzycyfrowych, w których zapisie dziesiętnym nie występuje cyfra 2, jest
A) 900 B) 729 C) 648 D) 512
Wszystkich liczb naturalnych pięciocyfrowych, w których zapisie dziesiętnym występują tylko cyfry 0, 5, 7, jest
A) B) C) D)
Liczb pięciocyfrowych, które można zapisać tylko za pomocą cyfr 0 i 1, jest
A) 5 B) 10 C) 16 D) 32
Wszystkich liczb czterocyfrowych parzystych, w których zapisie nie występują cyfry: 1, 2, 4, 8, 3, jest
A) 200 B) 625 C) 250 D) 500
Wszystkich liczb naturalnych pięciocyfrowych parzystych jest
A) B) C) D)
Aby odblokować telefon komórkowy należy użyć czterocyfrowego kodu PIN. Paweł ustalił, że jego kod PIN na parzystych miejscach będzie miał cyfrę nieparzystą, a na nieparzystych miejscach cyfrę parzystą oraz cyfry nie będą się powtarzać. Ile różnych kodów PIN może utworzyć Paweł?
A) 400 B) 300 C) D)
Wszystkich trzycyfrowych liczb naturalnych większych od 300 o wszystkich cyfrach parzystych jest
A) B) C) D)
Wszystkich liczb naturalnych trzycyfrowych, w których zapisie dziesiętnym nie występuje cyfra 9, jest
A) 900 B) 648 C) 729 D) 512
Wszystkich różnych liczb naturalnych czterocyfrowych, w których zapisie dziesiętnym wszystkie cyfry są różne, jest
A) B) C) D)
Wszystkich liczb naturalnych pięciocyfrowych, w których zapisie dziesiętnym występują tylko cyfry 0, 3, 5, 7, jest
A) B) C) D)
Liczba wszystkich dodatnich liczb czterocyfrowych parzystych, w których zapisie nie występują cyfry 0 i 2, jest równa
A) B) C) D)
Wszystkich liczb pięciocyfrowych, w których występują wyłącznie cyfry 0, 2, 5, jest
A) 12 B) 36 C) 162 D) 243
Ile jest wszystkich dwucyfrowych liczb naturalnych utworzonych z cyfr: 1, 3, 5, 7, 9, w których cyfry się nie powtarzają?
A) 10 B) 15 C) 20 D) 25
Wszystkich liczb czterocyfrowych parzystych, w których zapisie nie występują cyfry: 5, 2, 4, 8, 7, jest
A) 500 B) 625 C) 250 D) 200
Ile jest wszystkich trzycyfrowych liczb naturalnych utworzonych z cyfr: 1, 3, 5, 7, 9, w których cyfry się nie powtarzają?
A) 60 B) 125 C) 120 D) 95
Liczba wszystkich dodatnich liczb czterocyfrowych nieparzystych, w których zapisie nie występują cyfry 1 i 2, jest równa
A) B) C) D)
Wszystkich liczb naturalnych sześciocyfrowych nieparzystych jest
A) B) C) D)
Wszystkich różnych liczb naturalnych czterocyfrowych, w których zapisie dziesiętnym występują cztery różne cyfry parzyste jest
A) 120 B) 96 C) 625 D) 500
Punkt jest środkiem okręgu. Kąt środkowy ma miarę
A) B) C) D)
Punkt jest środkiem okręgu. Kąt środkowy ma miarę
A) B) C) D)
Punkty leżą na okręgu o środku (zobacz rysunek). Miara kąta jest równa
A) B) C) D)
Punkt jest środkiem okręgu. Kąt wpisany przedstawiony na rysunku ma miarę:
A) B) C) D)
Punkt jest środkiem okręgu. Kąt wpisany przedstawiony na rysunku ma miarę:
A) B) C) D)
Miara kąta (patrz rysunek obok) jest równa
A) B) C) D)
Środek okręgu opisanego na trójkącie należy do boku . Suma miar kątów i trójkąta jest równa
A) B) C) D)
Środek okręgu opisanego na trójkącie należy do boku . Miara kąta trójkąta jest równa
A) B) C) D)
Punkty , , i są wierzchołkami prostokąta . Pole tego prostokąta jest równe
A) 16 B) 32 C) 64 D) 96
Jeżeli i to
A) B) C) D)
Jeżeli i to
A) B) C) D)