Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe/Prawdopodobieństwo

Wyszukiwanie zadań

Z urny zawierającej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 185 , a prawdopodobieństwo wybrania co najwyżej jednej kuli białej jest równe 14 15 . Wobec tego prawdopodobieństwo wybrania dokładnie dwóch kul białych jest równe
A) 1115 B) 715- C) 115 D) -6 15

Ukryj Podobne zadania

Z pudełka zwierającego losy wygrywające i przegrywające wybieramy dwa losy. Prawdopodobieństwo wylosowania co najmniej jednego losu wygrywającego jest równe 513 , a prawdopodobieństwo wybrania co najwyżej jednego losu wygrywającego jest równe -9 13 . Wobec tego prawdopodobieństwo wybrania dokładnie dwóch losów wygrywających jest równe
A)  4 13 B) 1 13- C) 12 13 D) 11 13

Z urny zawierającej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli niebieskiej jest równe 1147 , a prawdopodobieństwo wybrania co najwyżej jednej kuli niebieskiej jest równe -8 17 . Wobec tego prawdopodobieństwo wybrania dokładnie dwóch kul niebieskich jest równe
A) 11 17 B) 7 17- C)  1 17 D) -9 17

Jeżeli A i B są zdarzeniami losowymi,  ′ B jest zdarzeniem przeciwnym do B , P (A) = 0,3 , P (B′) = 0,4 oraz A ∩ B = ∅ , to P (A ∪ B ) jest równe
A) 0,12 B) 0,18 C) 0,6 D) 0,9

Ukryj Podobne zadania

Jeżeli A i B są zdarzeniami losowymi,  ′ B jest zdarzeniem przeciwnym do B , P (A) = 0,1 , P (B′) = 0,3 oraz A ∩ B = ∅ , to P (A ∪ B ) jest równe
A) 0,4 B) 0,2 C) 0,8 D) 0,9

Ze zbioru {1,2,3,4,5,6 ,7,8,9,10,11} losujemy bez zwracania dwa razy po jednej liczbie. Wylosowane liczby tworzą parę (x,y) , gdzie x jest pierwszą wylosowaną liczbą, y jest drugą wylosowaną liczbą. Wszystkich par (x,y) takich, że suma x + y jest liczbą parzystą jest
A) 20 B) 25 C) 50 D) 61

W pudełku znajdują się dwie kule: niebieska i czerwona. Dziewięciokrotnie losujemy ze zwracaniem jedną kulę z tego pudełka. Prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie osiem z wylosowanych kul jest tego samego koloru jest równe
A) -1- 256 B) -9- 512 C) -9- 256 D) 5112

Ukryj Podobne zadania

W pudełku znajdują się dwie kule: niebieska i czerwona. Ośmiokrotnie losujemy ze zwracaniem jedną kulę z tego pudełka. Prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie siedem z wylosowanych kul jest tego samego koloru jest równe
A) -1 16 B) 1- 32 C) -1- 128 D) 2156

Losujemy jedną liczbę ze zbioru { 1,2,3,...,33} . Niech pi oznacza prawdopodobieństwo otrzymania liczby dającej resztę i przy dzieleniu przez 10. Wtedy
A) 2p = p 4 1 B) 2p = 5p 2 5 C) 4p4 = 3p3 D) 3p4 = 4p 3

Ukryj Podobne zadania

Losujemy jedną liczbę ze zbioru { 1,2,3,...,22} . Niech pi oznacza prawdopodobieństwo otrzymania liczby dającej resztę i przy dzieleniu przez 4. Wtedy
A) p = p 0 1 B) p = p 2 3 C) p1 = p 2 D) p 0 = p2

Ze zbioru liczb {1,2,3,4 ,5} losujemy bez zwracania kolejno dwa razy po jednej liczbie. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Prawdopodobieństwo wylosowania dwóch liczb mniejszych od 4 jest równe prawdopodobieństwu wylosowania dwóch liczb większych od 2. PF
Prawdopodobieństwo tego, że pierwsza liczba jest większa od drugiej jest równe 12 . PF

W pewnej grupie przyjaciół co czwarta osoba ma na imię Kuba. Losujemy jedną osobę z tej grupy. Prawdopodobieństwo tego, że wylosowana osoba nie ma na imię Kuba, jest równe
A) 1 4 B) 3 4 C) 3 5 D) 4 5

Ze zbioru liczb naturalnych pięciocyfrowych losujemy jedną liczbę. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest podzielna przez 5, jest równe
A) 2 5 B) 1- 20 C) 1 5 D) -1 18

Ze zbioru liczb naturalnych zawartych w przedziale ⟨1,100⟩ wybieramy losowo jedną. Niech p oznacza prawdopodobieństwo wylosowania liczby będącej wielokrotnością liczby 7. Wówczas
A) p = 1 7 B) p > 1 7 C) p = 0,14 D) p = 0,07

Ukryj Podobne zadania

Ze zbioru liczb naturalnych zawartych w przedziale ⟨1,100⟩ wybieramy losowo jedną. Niech p oznacza prawdopodobieństwo wylosowania liczby będącej wielokrotnością liczby 6. Wówczas
A) p = 1 6 B) p > 1 6 C) p = 0,06 D) p = 0,16

Z talii 52 kart losujemy jedną. Prawdopodobieństwo, że wylosujemy króla lub kiera, jest równe
A) 1572 B) 1652- C) 592 D) -1 52

Ukryj Podobne zadania

Z talii 24 kart (od dziewiątek) losujemy jedną. Prawdopodobieństwo, że wylosujemy waleta lub trefla, jest równe
A) 152 B) 13 C) 38 D) 11 24

Z talii 52 kart wylosowano jedną kartę. Jakie jest prawdopodobieństwo, że wylosowano kartę pikową lub waleta?
A) 542 B) 1352- C) 1562 D) 17 52

Z talii 52 kart losujemy jedną. Prawdopodobieństwo, że wylosujemy damę lub pika, jest równe
A) 1572 B) 113- C) 592 D) -4 13

Rzucamy sześć razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo otrzymania sześciu różnych liczb oczek, jest równe
A) 3524 B) 461656 C) 16 D) --1- 1296

Ze zbioru trzycyfrowych liczb naturalnych wybieramy losowo jedną liczbę. Prawdopodobieństwo otrzymania liczby podzielnej przez 30 jest równe
A) -3 90 B) 2- 90 C) -1 90 D) 10 90

Ukryj Podobne zadania

Ze zbioru trzycyfrowych liczb naturalnych wybieramy losowo jedną liczbę. Prawdopodobieństwo otrzymania liczby podzielnej przez 15 jest równe
A) -3 90 B) 2- 90 C) -4 90 D) -6 90

Doświadczenie losowe polega na rzucie trzema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo zdarzenia polegającego na tym, że liczba oczek otrzymanych na kostce jest równa liczbie wylosowanych orłów na monetach jest równe
A) 1 6 B) 1 8 C) -7 48 D)  5 24

Na loterię przygotowano pulę 100 losów, w tym 4 wygrywające. Po wylosowaniu pewnej liczby losów, wśród których był dokładnie jeden wygrywający, szansa na wygraną była taka sama jak przed rozpoczęciem loterii. Stąd wynika, że wylosowano
A) 4 losy. B) 20 losów. C) 50 losów. D) 25 losów.

Ukryj Podobne zadania

Na loterię przygotowano pulę 200 losów, w tym 4 wygrywające. Po wylosowaniu pewnej liczby losów, wśród których były dokładnie dwa wygrywające, szansa na wygraną była taka sama jak przed rozpoczęciem loterii. Stąd wynika, że wylosowano
A) 8 losów. B) 40 losów. C) 100 losów. D) 50 losów.

W pudełku znajdują się wyłącznie kule białe i czarne. Kul czarnych jest 18. Z tego pudełka w sposób losowy wyciągamy jedną kulę. Prawdopodobieństwo zdarzenia polegającego na tym, że wyciągniemy kulę czarną, jest równe 35 . Liczba kul białych w pudełku, przed wyciągnięciem jednej kuli, była równa
A) 9 B) 12 C) 15 D) 30

W pudełku znajdują się płytki z literami. Na każdej płytce jest wydrukowana jedna litera – spółgłoskowa albo samogłoskowa. Płytek z literami spółgłoskowymi jest o 25% więcej niż płytek z literami samogłoskowymi. Losujemy jedną płytkę. Prawdopodobieństwo wylosowania płytki z literą samogłoskową jest równe
A) 0,75 B) 0,25 C) 4 9 D) 59

Ukryj Podobne zadania

W pudełku znajdują się płytki z literami. Na każdej płytce jest wydrukowana jedna litera – spółgłoskowa albo samogłoskowa. Płytek z literami spółgłoskowymi jest o 40% więcej niż płytek z literami samogłoskowymi. Losujemy jedną płytkę. Prawdopodobieństwo wylosowania płytki z literą samogłoskową jest równe
A) 0,6 B) -5 12 C) 5 7 D) 0,4

Na loterii stosunek liczby losów wygrywających do liczby losów przegrywających jest równy 2 : 7. Zakupiono jeden los z tej loterii. Prawdopodobieństwo zdarzenia polegającego na tym, że zakupiony los jest wygrywający, jest równe
A) 1 9 B) 1 2 C) 2 9 D) 2 7

Ukryj Podobne zadania

Na loterii stosunek liczby losów wygrywających do liczby losów przegrywających jest równy 2 : 7. Zakupiono jeden los z tej loterii. Prawdopodobieństwo zdarzenia polegającego na tym, że zakupiony los jest przegrywający, jest równe
A) 8 9 B) 7 9 C) 1 2 D) 5 7

Kod, który zapisany jest na karcie dostępu, składa się z czterech cyfr. Chcemy, aby prawdopodobieństwo odkrycia tego kodu zmniejszyło się stukrotnie. Ile jeszcze cyfr należy dopisać do kodu?
A) 1 B) 2 C) 100 D) 6

Ukryj Podobne zadania

Kod, który zapisany jest na karcie dostępu, składa się z czterech cyfr. Chcemy, aby prawdopodobieństwo odkrycia tego kodu zmniejszyło się tysiąckrotnie. Ile jeszcze cyfr należy dopisać do kodu?
A) 3 B) 2 C) 1000 D) 7

Kod dostępu do sejfu składa się z pięciu cyfr. Chcemy, aby prawdopodobieństwo odkrycia tego kodu zmniejszyło się stukrotnie. Ile cyfr powinien mieć nowy kod?
A) 7 B) 2 C) 100 D) 6

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo otrzymania sumy oczek równej trzy wynosi
A) 16 B) 19 C) 112 D) -1 18

Ukryj Podobne zadania

Rzucamy dwa razy sześcienną kostką do gry. Prawdopodobieństwo wyrzucenia w obu rzutach liczby oczek podzielnej przez 3 jest równe
A) -1 12 B) 1 9 C) -5 36 D) 5 9

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo otrzymania pary liczb, których iloczyn jest większy od 20, jest równe
A) 1 6 B) 5- 36 C) 1 9 D) 2 9

Doświadczenie losowe polega na dwukrotnym rzucie symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do sześciu oczek. Prawdopodobieństwo zdarzenia polegającego na tym, że iloczyn liczb wyrzuconych oczek jest liczbą nieparzystą, jest równe
A) 1 2 B) 1 5 C) 1 4 D) 34

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo otrzymania pary liczb, których iloczyn jest większy od 18, jest równe
A) 1 6 B) 5- 36 C) 1 9 D) 2 9

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo otrzymania parzystej sumy oczek jest równe
A) 16 B) 14 C) 13 D) 1 2

Prawdopodobieństwo zdarzenia, że w rzucie dwiema symetrycznymi kostkami do gry otrzymamy iloczyn oczek równy 6, wynosi
A) 14 B) 19 C) 112 D) -1 18

Losujemy rzucając dwukrotnie symetryczną kostką sześcienną. Jakie jest prawdopodobieństwo, że w drugim rzucie wylosujemy o trzy oczka więcej niż w pierwszym?
A) -1 36 B) 1 4 C) -1 18 D) -1 12

Prawdopodobieństwo zdarzenia, że w rzucie dwiema symetrycznymi kostkami do gry otrzymamy sumę oczek równą 7, wynosi
A) 16 B) 19 C) 112 D) -1 18

Prawdopodobieństwo zdarzenia, że w rzucie dwiema symetrycznymi kostkami do gry otrzymamy iloczyn oczek równy 4, wynosi
A) 14 B) 19 C) 112 D) -1 18

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Niech p oznacza prawdopodobieństwo zdarzenia, że iloczyn liczb wyrzuconych oczek jest równy 5. Wtedy
A) p = 1- 36 B) p = 1- 18 C)  1- p = 12 D)  1 p = 9

Doświadczenie losowe polega na dwukrotnym rzucie symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego do sześciu. Niech p oznacza prawdopodobieństwo otrzymania w drugim rzucie liczby oczek podzielnej przez 3. Wtedy
A)  1- p = 18 B)  1 p = 6 C) p = 13 D) p = 23

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo otrzymania iloczynu oczek równego cztery jest równe
A) 112 B) 118- C) 19 D) -5 36

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo otrzymania sumy oczek równej cztery wynosi
A) 16 B) 19 C) 112 D) -1 18

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo dwukrotnego otrzymania pięciu oczek jest równe
A) 16 B) 112 C) 118 D) -1 36

Prawdopodobieństwo zdarzenia, że w rzucie dwiema symetrycznymi kostkami do gry otrzymamy sumę oczek równą 6, wynosi
A) 14 B) 19 C) 336 D) -5 36

W hurtowni owoców wyselekcjonowane jabłko spełnia normę jakości, gdy jego masa (po zaokrągleniu do pełnych dekagramów) mieści się w przedziale [19 dag, 21 dag]. Pobrano próbę kontrolną liczącą 50 jabłek i następnie zważono każde z nich. Na poniższym wykresie słupkowym przedstawiono rozkład masy jabłek w badanej próbie. Na osi poziomej podano – wyrażoną w dekagramach – masę jabłka (w zaokrągleniu do pełnych dekagramów), a na osi pionowej przedstawiono liczbę jabłek o określonej masie.


ZINFO-FIGURE


Spośród 50 zważonych jabłek z pobranej próby kontrolnej losujemy jedno jabłko. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosowane jabłko spełnia normę jakości, jest równe
A) 3 7 B) 5 7 C) 18 25 D) 190

Ukryj Podobne zadania

W hurtowni owoców wyselekcjonowana gruszka spełnia normę jakości, gdy jej masa (po zaokrągleniu do pełnych dekagramów) mieści się w przedziale [16 dag, 18 dag]. Pobrano próbę kontrolną liczącą 50 gruszek i następnie zważono każdą z nich. Na poniższym wykresie słupkowym przedstawiono rozkład masy gruszek w badanej próbie. Na osi poziomej podano – wyrażoną w dekagramach – masę gruszki (w zaokrągleniu do pełnych dekagramów), a na osi pionowej przedstawiono liczbę gruszek o określonej masie.


ZINFO-FIGURE


Spośród 50 zważonych gruszek z pobranej próby kontrolnej losujemy jedną gruszkę. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana gruszka spełnia normę jakości, jest równe
A) 4 5 B) 17 50 C) 19 25 D) 3590

Strona 2 z 6
spinner