Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań

Ciąg (an ) jest określony wzorem  2 an = 2n dla n ≥ 1 . Różnica a5 − a 4 jest równa
A) 4 B) 20 C) 36 D) 18

Rzucamy trzy razy symetryczną monetą. Niech p oznacza prawdopodobieństwo otrzymania dokładnie dwóch orłów w tych trzech rzutach. Wtedy
A) 0 ≤ p < 0,2 B) 0 ,2 ≤ p ≤ 0,3 5 C) 0,35 < p ≤ 0,5 D) 0,5 < p ≤ 1

Wyznacz równania prostych stycznych do okręgu o równaniu x 2 + y2 + 4x − 6y − 3 = 0 i zarazem prostopadłych do prostej x + 2y − 6 = 0 .

Ala kupiła trzy zeszyty i blok rysunkowy. Średnia arytmetyczna cen tych czterech artykułów była równa 6 zł. Zeszyty kosztowały łącznie 15 zł. Ile kosztował blok rysunkowy?
A) 4 zł B) 5 zł C) 8 zł D) 9 zł

Na rysunku, w kartezjańskim układzie współrzędnych (x,y ) , przedstawiono wykres funkcji f . Każdy z punktów przecięcia wykresu funkcji f z prostą o równaniu y = 2 ma obie współrzędne całkowite.


ZINFO-FIGURE


Na kolejnym rysunku przedstawiono wykres funkcji g , powstałej w wyniku przesunięcia równoległego wykresu funkcji f wzdłuż osi Ox o 4 jednostki w lewo.


ZINFO-FIGURE


Funkcje f i g są powiązane zależnością

A) g (x) = f(x + 4) ,B) g (x) = f(x − 4) ,C) g (x) = f(x )− 4 ,

oraz mają takie same

1) dziedziny.2) zbiory wartości.

Dany jest okrąg o środku w punkcie S i promieniu r . Na przedłużeniu cięciwy AB poza punkt B odłożono odcinek BC równy promieniowi danego okręgu. Przez punkty C i S poprowadzono prostą. Prosta CS przecina dany okrąg w punktach D i E (zobacz rysunek). Wykaż, że jeżeli miara kąta ACS jest równa α , to miara kąta ASD jest równa 3α .


PIC


Dany jest ostrosłup prawidłowy czworokątny o wysokości H = 16 . Cosinus kąta nachylenia krawędzi bocznej do płaszczyzny podstawy tego ostrosłupa jest równy 35 . Oblicz pole powierzchni bocznej tego ostrosłupa.

Przekątne równoległoboku mają długości 4 i 8, a kąt między tymi przekątnymi ma miarę 3 0∘ . Pole tego równoległoboku jest równe
A) 32 B) 16 C) 12 D) 8

Dane są dwa podzbiory zbioru liczb całkowitych:

K = {− 4,− 1,1,5 ,6 } i L = { −3 ,−2 ,2,3,4}.

Z każdego z nich losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczb, których iloczyn jest dodatni.

Okrąg przedstawiony na rysunku ma środek w punkcie O = (3,1) i przechodzi przez punkty S = (0,4) i T = (0,− 2) . Okrąg ten jest opisany przez równanie


PIC


A) (x + 3)2 + (y + 1)2 = 1 8 B) (x − 3)2 + (y + 1)2 = 1 8
C) (x − 3)2 + (y − 1)2 = 18 D)  2 2 (x + 3) + (y − 1) = 1 8

Dany jest trójkąt o bokach długości  √ -- √ -- √ -- 2 5 ,3 5,4 5 . Trójkątem podobnym do tego trójkąta jest trójkąt, którego boki mają długości
A) 10, 15, 20 B) 20, 45, 80 C) √ -- 2 , √ -- 3 , √ -- 4 D) √ -- √ -- √ -- 5,2 5,3 5

Strona 7 z 111
spinner