Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań

Na rysunku przedstawiono fragment wykresu funkcji kwadratowej f (x) = ax2 + bx + c , której miejsca zerowe to: − 3 i 1.


PIC


Współczynnik c we wzorze funkcji f jest równy
A) 1 B) 2 C) 3 D) 4

Podstawą ostrosłupa ABCDS jest kwadrat ABCD . Krawędź boczna SD jest wysokością ostrosłupa, a jej długość jest dwa razy większa od długości krawędzi podstawy. Oblicz sinus kąta między ścianami bocznymi ABS i CBS tego ostrosłupa.

Oblicz najmniejszą i największą wartość funkcji kwadratowej f (x) = (2x + 1)(x − 2) w przedziale ⟨− 2,2⟩ .

Cena pewnego towaru wraz z 7–procentowym podatkiem VAT jest równa 34 347 zł. Cena tego samego towaru wraz z 23–procentowym podatkiem VAT będzie równa
A) 37 236 zł B) 39 842,52 zł C) 39 483 zł D) 42 246,81 zł

Na rysunku przedstawiono fragment wykresu funkcji kwadratowej f . Jednym z miejsc zerowych tej funkcji jest liczba 2. Do wykresu funkcji f należy punkt (0,3) . Prosta o równaniu x = − 2 jest osią symetrii paraboli, będącej wykresem funkcji f .


PIC


Drugim miejscem zerowym funkcji f jest liczba
A) − 2 B) − 3 C) − 4 D) − 6

W kartezjańskim układzie współrzędnych (x ,y) zaznaczono kąt α o wierzchołku w punkcie O = (0,0) . Jedno z ramion tego kąta pokrywa się z dodatnią półosią Ox , a drugie przechodzi przez punkt P = (− 3,1) (zobacz rysunek).


ZINFO-FIGURE


Tangens kąta α jest równy
A) √-1- 10 B)  ( ) − √-3- 10 C) (− 3) 1 D) ( ) − 1 3

Dwa okręgi o promieniach r = 2 i R = 6 są styczne zewnętrznie i są styczne do wspólnej prostej k . Wykaż, że prosta l przechodząca przez środki S i P tych okręgów przecina prostą k pod kątem α = 30∘ (zobacz rysunek).


PIC


W tabeli przedstawiono roczne przyrosty wysokości pewnej sosny w ciągu sześciu kolejnych lat.

kolejne lata 1 2 3456
przyrost (w cm)10107887

Oblicz średni roczny przyrost wysokości tej sosny w badanym okresie sześciu lat. Otrzymany wynik zaokrąglij do 1 cm. Oblicz błąd względny otrzymanego przybliżenia. Podaj ten błąd w procentach.

Liczby a i c są dodatnie. Liczba b stanowi 48% liczby a oraz 32% liczby c . Wynika stąd, że
A) c = 1 ,5a B) c = 1,6a C) c = 0,8a D) c = 0,16a

Dany jest sześcian ABCDEF GH o krawędzi długości 6. Punkt S jest punktem przecięcia przekątnych AH i DE ściany bocznej ADHE (zobacz rysunek).


ZINFO-FIGURE


Oblicz wysokość trójkąta SBH poprowadzoną z punktu S na bok BH tego trójkąta.

W pewnym ostrosłupie prawidłowym stosunek liczby W wszystkich wierzchołków do liczby K wszystkich krawędzi jest równy WK = 35 . Podstawą tego ostrosłupa jest
A) kwadrat. B) pięciokąt foremny.
C) sześciokąt foremny. D) siedmiokąt foremny.

Każda krawędź graniastosłupa prawidłowego sześciokątnego ma długość równą 6. Pole powierzchni całkowitej tego graniastosłupa jest równe
A) 216 + 18 √ 3- B) 216 + 54√ 3- C)  √ -- 216 + 21 6 3 D)  √ -- 216+ 108 3

W grupie liczącej 29 uczniów (dziewcząt i chłopców) jest 15 chłopców. Z tej grupy trzeba wylosować jedną osobę. Prawdopodobieństwo zdarzenia polegającego na tym, że zostanie wylosowana dziewczyna, jest równe
A) 14 15 B) 1- 14 C) 14 29 D) 1259

Dany jest stożek o objętości 18π , którego przekrojem osiowym jest trójkąt ABC (zobacz rysunek). Kąt CBA jest kątem nachylenia tworzącej l tego stożka do płaszczyzny jego podstawy. Tangens kąta CBA jest równy 2.


ZINFO-FIGURE


Wynika stąd, że wysokość h tego stożka jest równa
A) 12 B) 6 C) 4 D) 2

Prosta l , na której leży punkt A = (2,5) , przecina parabolę o równaniu y = x2 w dwóch różnych punktach B = (x1,y1) i C = (x2,y2) . Oblicz wartość współczynnika kierunkowego prostej l , przy której suma y1 + y2 osiągnie wartość najmniejszą.

Strona 6 z 111
spinner