Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań

Wyrażenie  3 W = x − 27 jest równe
A) (x − 9)(x + 3) B)  ( ) (x − 3) x2 + 3x + 9
C) (x 2 − 3 )(x + 9) D) (x+ 3)(x 2 − 3x + 9)

Ukryj Podobne zadania

Wyrażenie  3 W = x − 8 jest równe
A)  ( ) (x − 2) x2 + 2x + 4 B) (x− 4)(x + 2)
C) (x 2 − 4 )(x + 2) D) (x+ 2)(x 2 − 2x + 4)

Wyrażenie  3 W = x + 27 jest równe
A) (x − 9)(x + 3) B)  ( ) (x − 3) x2 + 3x + 9
C) (x 2 − 3 )(x + 9) D) (x+ 3)(x 2 − 3x + 9)

Wyprowadź wzór  Kqn(q−1) R = qn−1 na wysokość raty R kredytu udzielonego w kwocie K , przy założeniu, że:
– spłata tego kredytu jest rozłożona na n równych rat płaconych miesięcznie;
– pierwszą ratę wpłacamy po miesiącu od daty udzielenia kredytu;
– roczne oprocentowanie kredytu jest równe r i  r- q = 1+ 12 .

Dla jakich wartości parametru k rozwiązanie układu równań { x − y = k− 1 2x − 1 = − 3− k spełnia warunek |x |+ |y| = 2 + k ?

Suma n początkowych wyrazów ciągu geometrycznego (an) wyraża się wzorem  ( )n Sn = 1− 23 dla n ≥ 1 . Oblicz pierwszy wyraz ciągu i jego iloraz.

Prosta równoległa do jednego boku trójkąta dzieli jego pole na połowy. W jakim stosunku prosta ta dzieli pozostałe boki trójkąta?

Wykaż, że jeżeli x + y + z = 0 to zachodzi równość

 2 2 2 ---------x--+-y--+-z---------- = 1. (x − y )2 + (y − z)2 + (z − x)2 3
Ukryj Podobne zadania

Wartość wyrażenia log 9+2 log √ 3 --32-log243--- jest równa
A) 2 3 B) 3 4 C) 4 D) 9

W układzie współrzędnych punkty A = (4 ,3) i B = (10,5 ) są wierzchołkami trójkąta ABC . Wierzchołek C leży na prostej o równaniu y = 2x + 3 . Oblicz współrzędne punktu C , dla którego kąt ABC jest prosty.

Ukryj Podobne zadania

W układzie współrzędnych punkty A = (3,− 2) i B = (9,− 4) są wierzchołkami trójkąta ABC . Wierzchołek C leży na prostej o równaniu y = − 2x− 4 . Oblicz współrzędne punktu C , dla którego kąt ABC jest prosty.

W kwadrat ABCD o boku długości 17 wpisano kwadrat EFGH , jak pokazano na rysunku. Wiedząc, że przekątna kwadratu EFGH ma długość  √ -- 1 3 2 oblicz tangens kąta α zaznaczonego na rysunku.


PIC


Na rysunku przedstawiony jest wykres funkcji liniowej f .


PIC


Funkcja f jest określona wzorem
A) y = 43x + 1 B) y = − 34x+ 1 C) y = − 3x + 1 D) y = 4x + 1

Ukryj Podobne zadania

Na rysunku przedstawiony jest wykres funkcji liniowej f .


PIC


Funkcja f jest określona wzorem
A) y = 43x + 1 B) y = − 34x+ 1 C) y = − 3x + 1 D) y = 4x + 1

Na rysunku przedstawiony jest wykres funkcji liniowej f .


PIC


Funkcja f jest określona wzorem
A) y = 2x + 3 B) y = − 2x + 3 C) y = − 3x+ 2 2 D) y = − 2x + 2 3

Wskaż wzór funkcji, której wykres przedstawiono na poniższym rysunku.


PIC


A) y = 12x − 1 B) y = 12x + 1 C) y = − 1x− 1 2 D) y = − 1x + 1 2

Wskaż wzór funkcji, której wykres przedstawiono na poniższym rysunku.


PIC


A) y = 12x − 1 B) y = 12x + 1 C) y = − 1x− 1 2 D) y = − 1x + 1 2

Na rysunku przedstawiony jest wykres funkcji liniowej f .


PIC


Funkcja f jest określona wzorem
A) y = 43x + 1 B) y = − 34x+ 1 C) y = − 3x + 1 D) y = 4x + 1

Na rysunku przedstawiony jest wykres funkcji liniowej f .


PIC


Funkcja f jest określona wzorem
A) y = 2x + 3 B) y = − 2x + 3 C) y = 3x+ 2 2 D) y = − 2x + 2 3

Na rysunku przedstawiony jest wykres funkcji liniowej f .


PIC


Funkcja f jest określona wzorem
A) y = 2x + 3 B) y = − 2x + 3 C) y = − 3x+ 2 2 D) y = − 2x + 2 3

Na rysunku przedstawiono wykres funkcji y = f(x) .


PIC


Wzór opisujący funkcję y = f(x) ma postać:
A) y = − 3x− 2 B) y = − 2x− 2 C) y = 2x − 2 D) y = 3x − 2

Wskaż wzór funkcji, której wykres przedstawiono na poniższym rysunku.


PIC


A) y = 12x − 1 B) y = 12x + 1 C) y = − 1x− 1 2 D) y = − 1x + 1 2

Obwód trójkąta równobocznego ABC jest równy 12 cm. Punkty M , N i P należą odpowiednio do boków AB , BC , AC tego trójkąta przy czym |AM | = |BN | = |CP | = x . Zbadaj dla jakiej wartości x , pole trójkąta MNP będzie najmniejsze. Znajdź wartość tego pola.

Na rysunku przedstawiono wykres funkcji y = f(x) .


PIC


Zbiorem wartości funkcji y = −f (−x ) jest
A) ⟨− 2,6⟩ B) ⟨−6 ,−2 ⟩ C) ⟨− 6,2⟩ D) ⟨2,6⟩

Ukryj Podobne zadania

Na rysunku przedstawiono wykres funkcji y = f(x) .


PIC


Zbiorem wartości funkcji y = −f (x + 3) jest
A) ⟨− 5,1⟩ B) ⟨− 1,5⟩ C) ⟨− 2,4⟩ D) ⟨− 4,2⟩

Naszkicuj wykres funkcji, która każdej liczbie rzeczywistej m przyporządkowuje liczbę pierwiastków równania

(m 2 + 5m − 6)x2 + (2 − 2m )x + 3 = 0 .

Wyznacz równanie symetralnej odcinka o końcach A = (1;3) i B = (− 5;2 ) .

Ukryj Podobne zadania

Wyznacz równanie symetralnej odcinka AB , gdzie A = (− 3;4) i B = (2;− 1) .

Wyznacz równanie symetralnej odcinka o końcach A = (4;− 1) i B = (3;− 7) .

Wyznacz równanie symetralnej odcinka o końcach A = (2;− 3) i B = (− 2;5) .

Wielomian  4 2 2005 W (x) = (x − 9x + 7) , po wykonaniu potęgowania i dokonaniu redukcji wyrazów podobnych, zapisano w postaci W (x) = anxn + an− 1xn−1 + ...+ a2x2 + a1x+ a0 . Oblicz sumę an + a + ...+ a + a + a n− 1 2 1 0 .

Wielomian  4 3 2 W (x) = x + ax + bx − x+ b przy dzieleniu przez każdy z dwumianów: x + 1 , x − 2 i x + 3 daję tę samą resztę. Wyznacz a i b .

Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y) , dane są punkty A = (1,2) i B = (2m ,m ) , gdzie m jest liczbą rzeczywistą, oraz prosta k o równaniu y = −x − 1 . Prosta przechodząca przez punkty A i B jest prostopadła do prostej k , gdy
A) m = − 1 B) m = 1 C)  1 m = 2 D) m = 2

Dany jest odcinek o końcach A = (− 5,− 3),B = (7,1) .

  • Wyznacz równanie symetralnej tego odcinka.
  • Wyznacz równanie okręgu o średnicy AB .
Ukryj Podobne zadania

Dany jest odcinek o końcach A = (− 4,2 ),B = (8,− 4) .

  1. Wyznacz równanie okręgu o średnicy AB .
  2. Wyznacz równanie średnicy prostopadłej do średnicy AB .

W pojemniku ze słodyczami znajduje się 48 cukierków i 32 lizaki. Osiem lizaków i piętnaście cukierków ma smak jabłkowy, a pozostałe słodycze mają smak pomarańczowy. Z pojemnika wybrano losowo jeden słodycz (cukierek lub lizak) i okazało się, że ma smak pomarańczowy. Oblicz prawdopodobieństwo zdarzenia, że wybrany słodycz jest lizakiem.

Strona 408 z 461
spinner