Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria

Wyszukiwanie zadań

Metalową kulę o promieniu 10 cm i stożek o średnicy 16 cm i wysokości 12 cm przetopiono. Następnie z otrzymanego metalu wykonano walec o średnicy 8 cm. Jaką wysokość ma ten walec?

Ukryj Podobne zadania

Metalową kulę o promieniu 5 cm i stożek o średnicy 12 cm i wysokości 15 cm przetopiono. Następnie z otrzymanego metalu wykonano walec o średnicy 8 cm. Jaką wysokość ma ten walec?

Przekrój stożka wyznaczony przez wierzchołek i cięciwę podstawy jest trójkątem równobocznym, o polu równym  √ -- 36 3 . Płaszczyzna r , do której należy ten przekrój, tworzy z płaszczyzną podstawy stożka kąt o mierze równej 60 ∘ . Oblicz objętość stożka.

Dany jest sześcian ABCDEF GH , w którym |AB | = 3 (patrz rysunek). Oblicz odległość wierzchołka A od przekątnej EC .


PIC


Cosinus kąta rozwarcia stożka jest równy 7- 25 . Odległość środka kuli wpisanej w ten stożek od jego wierzchołka jest równa 10. Oblicz pole powierzchni bocznej stożka.

Trapez prostokątny o podstawach długości 4 i 5 oraz kącie ostrym równym 45 ∘ obraca się wokół krótszej podstawy. Oblicz objętość otrzymanej bryły.

Rozwinięcie powierzchni bocznej stożka jest wycinkiem kołowym o kącie środkowym α . Kąt ten oparty jest na łuku długości a . Oblicz objętość stożka.

Niech K1 będzie sześcianem o krawędzi długości a . Konstruujemy kolejno sześciany K2,K 3,... takie, że pole powierzchni całkowitej kolejnego sześcianu jest dwa razy większe od pola powierzchni poprzedniego sześcianu. Oblicz sumę objętości sześcianów K ,K ,...,K 1 2 8 .

Podstawą ostrosłupa ABCDS jest prostokąt ABCD o bokach długości a i b . Krawędź AS jest prostopadła do płaszczyzny podstawy. Odległość wierzchołka A od krawędzi SC jest równa d . Wyznacz objętość tego ostrosłupa.

W prostopadłościanie ABCDEF GH przekątna ściany BCGF jest o 2 dłuższa od krawędzi CG i o 4 dłuższa od krawędzi BC . Przekątna ściany ABF E jest nachylona do płaszczyzny ABCD pod kątem 60∘ . Oblicz objętość tego prostopadłościanu.


ZINFO-FIGURE


Podstawą graniastosłupa prostego ABCDEF jest trójkąt równoramienny ABC , w którym |AC | = |BC | , |AB | = 8 . Wysokość trójkąta ABC , poprowadzona z wierzchołka C , ma długość 3. Przekątna CE ściany bocznej tworzy z krawędzią CB podstawy ABC kąt 60∘ (zobacz rysunek).


PIC


Oblicz pole powierzchni całkowitej oraz objętość tego graniastosłupa.

Podstawą graniastosłupa prostego jest trójkąt prostokątny równoramienny. Kąt między przekątnymi, wychodzącymi z tego samego wierzchołka, dwóch prostopadłych ścian bocznych, ma miarę 60 ∘ . Wiedząc, że objętość tego graniastosłupa jest równa 32 cm 3 , oblicz pole powierzchni całkowitej tej bryły.

Oblicz objętość graniastosłupa prostego, którego podstawą jest romb o przekątnych długości 16 cm i 30 cm, a krawędź boczna jest dwa razy dłuższa od krawędzi podstawy.

W kostce mającej kształt sześcianu o boku 1 dm ścięto wszystkie naroża w ten sposób ze wszystkie krawędzie nowopowstałej bryły mają tę samą długość. Obliczyć objętość otrzymanej bryły.


PIC


W kulę o promieniu R wpisano stożek. Ze środka tej kuli widać tworzącą stożka pod kątem α . Oblicz objętość stożka.

Trójkąt równoramienny o obwodzie 12 obraca się wokół swojej osi symetrii. Oblicz dla jakich długości boków trójkąta otrzymamy stożek, w którym różnica między polem powierzchni bocznej, a polem podstawy jest największa. Oblicz objętość tego stożka.

W czworościanie ABCD krawędź BD ma długość 2, a wszystkie pozostałe krawędzie mają długość 4.


PIC


  • Oblicz odległość krawędzi BD od krawędzi AC .
  • Wiedząc, że punkt O jest równoodległy od wszystkich wierzchołków czworościanu, oblicz długość odcinka OD .

Trójkąt równoramienny o podstawie długości 6 cm i ramionach długości 5 cm obracamy wokół jednego z ramion. Otrzymaną w ten sposób bryłę dzielimy na dwa stożki. Podaj długość promienia podstawy i długość tworzącej każdego z tych stożków.

Dany jest sześcian ABCDEF GH o krawędzi długości 2. Punkt S jest środkiem krawędzi DH (zobacz rysunek). Oblicz miarę najmniejszego kąta wewnętrznego trójkąta CF S .


PIC


Dany jest graniastosłup prawidłowy trójkątny ABCDEF . Krawędź podstawy tego graniastosłupa ma długość 4, a wysokość graniastosłupa jest równa 6 (zobacz rysunek).


PIC


Oblicz sinus kąta AF B .

Punkty K ,L,M i N są środkami krawędzi BF ,GH ,EH i CD prostopadłościanu ABCDEF GH , w którym |AB | = 5,|AD | = |AE | = 4 . Uzasadnij, że |KL | = |MN | .


PIC


Strona 6 z 28
spinner