Metalową kulę o promieniu 10 cm i stożek o średnicy 16 cm i wysokości 12 cm przetopiono. Następnie z otrzymanego metalu wykonano walec o średnicy 8 cm. Jaką wysokość ma ten walec?
/Szkoła średnia/Geometria/Stereometria
Metalową kulę o promieniu 5 cm i stożek o średnicy 12 cm i wysokości 15 cm przetopiono. Następnie z otrzymanego metalu wykonano walec o średnicy 8 cm. Jaką wysokość ma ten walec?
Przekrój stożka wyznaczony przez wierzchołek i cięciwę podstawy jest trójkątem równobocznym, o polu równym . Płaszczyzna , do której należy ten przekrój, tworzy z płaszczyzną podstawy stożka kąt o mierze równej . Oblicz objętość stożka.
Dany jest sześcian , w którym (patrz rysunek). Oblicz odległość wierzchołka od przekątnej .
Cosinus kąta rozwarcia stożka jest równy . Odległość środka kuli wpisanej w ten stożek od jego wierzchołka jest równa 10. Oblicz pole powierzchni bocznej stożka.
Trapez prostokątny o podstawach długości 4 i 5 oraz kącie ostrym równym obraca się wokół krótszej podstawy. Oblicz objętość otrzymanej bryły.
Rozwinięcie powierzchni bocznej stożka jest wycinkiem kołowym o kącie środkowym . Kąt ten oparty jest na łuku długości . Oblicz objętość stożka.
Niech będzie sześcianem o krawędzi długości . Konstruujemy kolejno sześciany takie, że pole powierzchni całkowitej kolejnego sześcianu jest dwa razy większe od pola powierzchni poprzedniego sześcianu. Oblicz sumę objętości sześcianów .
Podstawą ostrosłupa jest prostokąt o bokach długości i . Krawędź jest prostopadła do płaszczyzny podstawy. Odległość wierzchołka od krawędzi jest równa . Wyznacz objętość tego ostrosłupa.
W prostopadłościanie przekątna ściany jest o 2 dłuższa od krawędzi i o 4 dłuższa od krawędzi . Przekątna ściany jest nachylona do płaszczyzny pod kątem . Oblicz objętość tego prostopadłościanu.
Podstawą graniastosłupa prostego jest trójkąt równoramienny , w którym , . Wysokość trójkąta , poprowadzona z wierzchołka , ma długość 3. Przekątna ściany bocznej tworzy z krawędzią podstawy kąt (zobacz rysunek).
Oblicz pole powierzchni całkowitej oraz objętość tego graniastosłupa.
Podstawą graniastosłupa prostego jest trójkąt prostokątny równoramienny. Kąt między przekątnymi, wychodzącymi z tego samego wierzchołka, dwóch prostopadłych ścian bocznych, ma miarę . Wiedząc, że objętość tego graniastosłupa jest równa , oblicz pole powierzchni całkowitej tej bryły.
Oblicz objętość graniastosłupa prostego, którego podstawą jest romb o przekątnych długości 16 cm i 30 cm, a krawędź boczna jest dwa razy dłuższa od krawędzi podstawy.
W kostce mającej kształt sześcianu o boku 1 dm ścięto wszystkie naroża w ten sposób ze wszystkie krawędzie nowopowstałej bryły mają tę samą długość. Obliczyć objętość otrzymanej bryły.
W kulę o promieniu wpisano stożek. Ze środka tej kuli widać tworzącą stożka pod kątem . Oblicz objętość stożka.
Trójkąt równoramienny o obwodzie 12 obraca się wokół swojej osi symetrii. Oblicz dla jakich długości boków trójkąta otrzymamy stożek, w którym różnica między polem powierzchni bocznej, a polem podstawy jest największa. Oblicz objętość tego stożka.
W czworościanie krawędź ma długość 2, a wszystkie pozostałe krawędzie mają długość 4.
- Oblicz odległość krawędzi od krawędzi .
- Wiedząc, że punkt jest równoodległy od wszystkich wierzchołków czworościanu, oblicz długość odcinka .
Trójkąt równoramienny o podstawie długości 6 cm i ramionach długości 5 cm obracamy wokół jednego z ramion. Otrzymaną w ten sposób bryłę dzielimy na dwa stożki. Podaj długość promienia podstawy i długość tworzącej każdego z tych stożków.
Dany jest sześcian o krawędzi długości 2. Punkt jest środkiem krawędzi (zobacz rysunek). Oblicz miarę najmniejszego kąta wewnętrznego trójkąta .
Dany jest graniastosłup prawidłowy trójkątny . Krawędź podstawy tego graniastosłupa ma długość 4, a wysokość graniastosłupa jest równa 6 (zobacz rysunek).
Oblicz sinus kąta .
Punkty i są środkami krawędzi i prostopadłościanu , w którym . Uzasadnij, że .