Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Trójkąt/Dowolny

Wyszukiwanie zadań

Wykaż, że jeżeli α,β ,γ są kątami wewnętrznymi trójkąta i  2 2 2 sin α+ sin β = 5sin γ , to sin γ ≤ 35 .

W trójkącie ABC poprowadzono dwusieczne kątów A i B . Dwusieczne te przecinają się w punkcie P . Uzasadnij, że kąt AP B jest rozwarty.

Ukryj Podobne zadania

W trójkącie ostrokątnym ABC proste AH i BH zawierają wysokości poprowadzone z wierzchołków A i B . Uzasadnij, że kąt AHB jest rozwarty.

Dany jest trójkąt ABC . Odcinek CD jest wysokością tego trójkąta, punkt E jest środkiem boku BC (tak jak na rysunku) i |CD | = |DE | . Udowodnij, że trójkąt CDE jest równoboczny.


PIC


Wykaż, że jeżeli kąty trójkąta: α,β,γ spełniają równanie  2 2 2 sin α = sin β + sin γ to trójkąt jest prostokątny.

W trójkącie ostrokątnym ABC bok AB ma długość 18 cm, a wysokość CD jest równa 15 cm. Punkt D dzieli bok AB tak, że |AD | : |DB | = 1 : 2 . Przez punkt P leżący na odcinku DB poprowadzono prostą równoległą do prostej CD , odcinając od trójkąta ABC trójkąt, którego pole jest cztery razy mniejsze niż pole trójkąta ABC . Oblicz długość odcinka P B .

Wykaż, że jeżeli środkowa trójkąta jest dwa razy krótsza od boku, do którego jest poprowadzona, to trójkąt ten jest prostokątny.

W trójkącie ABC , w którym |∡CAB | = α , poprowadzono dwusieczną CD kąta wewnętrznego ACB , przy czym |∡CDA | = β . Oblicz |AD-| |DB| .

Dany jest trójkąt o bokach długości 7,8,9.

  • Oblicz promień okręgu wpisanego w ten trójkąt.
  • Oblicz sumę sinusów kątów tego trójkąta.

Dane są miary łukowe dwóch kątów trójkąta: π- 6 i π- 4 . Wyznacz miarę trzeciego kąta w stopniach i radianach.

Ukryj Podobne zadania

Dane są miary łukowe dwóch kątów trójkąta: π- 12 i 2π- 3 . Wyznacz miarę trzeciego kąta w stopniach i radianach.

Dane są miary łukowe dwóch kątów trójkąta: π- 6 i π- 9 . Wyznacz miarę trzeciego kąta w stopniach i radianach.

Dane są miary łukowe dwóch kątów trójkąta: 3π- 4 i π- 6 . Wyznacz miarę trzeciego kąta w stopniach i radianach.

W trójkącie ABC dane są: |AC | = 7 , |BC | = 14 i  ∘ ∡ACB = 60 . Oblicz pole trójkąta ABC .

  • Uzasadnij, że jeśli długości boków trójkąta są równe p 2 − q2 , 2pq i p 2 + q2 , gdzie p i q są liczbami dodatnimi takimi, że p > q , to trójkąt ten jest prostokątny.
  • Wyznacz wszystkie naturalne wartości p i q , dla których najkrótszy bok otrzymanego trójkąta ma długość 13.

Udowodnij, że jeżeli środek okręgu opisanego na trójkącie leży na jednym z jego boków, to trójkąt ten jest prostokątny.

Oblicz sumę długości środkowych trójkąta o długościach boków: 2, 3 i 4.

Wykaż, że jeżeli długości a ,b,c boków trójkąta spełniają równość

 1 1 3 ------+ ----- = ---------, a+ b b + c a+ b+ c

to promień okręgu opisanego na tym trójkącie jest równy b√3- 3 .

Odcinki DH i EI są równoległe do boku BC trójkąta ABC , a odcinki DF i EG są równoległe do boku AC . Uzasadnij, że jeżeli |CF|= |CH| |FG | |HA| , to  2 |AD | = |DE |⋅|DB | .


PIC


W trójkącie ABC dane są |AB | = 6 ,  √ -- |BC | = 3 3 oraz  ∘ |∡BAC | = 60 . Oblicz pole trójkąta ABC .

W trójkącie ABC poprowadzono dwusieczne kątów przecinające boki AB i AC tego trójkąta w punktach – odpowiednio – L i K . Punkt P jest punktem przecięcia tych dwusiecznych. Długości boków trójkąta ABC spełniają warunki: |AB |+ |AC | = 1 oraz

|BC |2 + 3|AC | = 3|AC |2 + 1.

Udowodnij, że punkt A leży na okręgu opisanym na trójkącie KLP .

W trójkącie ABC dwusieczna kąta B przecina bok AC w punkcie M . Przez punkt M prowadzimy prostą równoległą do BC , przecinającą bok AB w punkcie N (rys.). Udowodnij, że |MN | = |BN | .


PIC


Ukryj Podobne zadania

W trójkącie ABC dwusieczna kąta A przecina bok BC w punkcie P . Przez punkt P prowadzimy prostą równoległą do AC , przecinającą bok AB w punkcie Q (rys.). Udowodnij, że |P Q| = |AQ | .


PIC


Wykaż, że jeżeli kąty α,β ,γ trójkąta ABC spełniają warunek  1−cosγ- cos α = 2cosβ to trójkąt jest równoramienny.

Strona 6 z 11
spinner