Wspólne styczne dwóch okręgów stycznych zewnętrznie przecinają się pod kątem . Wyznacz stosunek długości promieni tych okręgów.
/Szkoła średnia/Geometria/Planimetria/Okrąg i koło/Styczność
Do dwóch stycznych zewnętrznie okręgów poprowadzono dwie wspólne styczne: jedną zewnętrzną i jedną wewnętrzną. Proste te przecinają się pod kątem . Wyznacz stosunek długości promieni tych okręgów.
Dwa okręgi o promieniach i są styczne zewnętrznie i są styczne do wspólnej prostej . Wykaż, że prosta przechodząca przez środki i tych okręgów przecina prostą pod kątem (zobacz rysunek).
Z wierzchołków kwadratu o boku , jako ze środków zakreślono 4 okręgi o promieniu . Znajdź promienie okręgów stycznych do tych czterech okręgów jednocześnie.
Suma pól dwóch kół stycznych zewnętrznie jest równa . Oblicz promienie tych kół, jeżeli wiadomo, że obwód większego koła jest o 400% większy od obwodu mniejszego koła.
Każde dwa spośród trzech okręgów są zewnętrznie styczne. Oblicz promienie tych okręgów, jeśli wiadomo, że odległości między ich środkami wynoszą 8, 11, 13.
Odcinek jest zawarty w dwusiecznej kąta trójkąta . Kąty trójkąta mają miary . Styczna do okręgu opisanego na tym trójkącie w punkcie przecina prostą w punkcie (zobacz rysunek). Oblicz, ile stopni ma każdy z kątów trójkąta .
Różnica promieni dwóch okręgów współśrodkowych jest równa 3. W okręgu o większym promieniu poprowadzono cięciwę styczną do drugiego okręgu. Cięciwa ta ma długość 10. Oblicz długość promieni tych okręgów.
W półkole o średnicy wpisano okrąg styczny do średnicy w jej środku. Znajdź promień okręgu stycznego jednocześnie do półokręgu , do wpisanego okręgu oraz do średnicy jeżeli .
Dwa okręgi o promieniach i () są styczne zewnętrznie. Prosta nie przechodzi przez punkt wspólny tych okręgów i jest styczna do każdego z nich. Znajdź promień okręgu stycznego zewnętrznie do danych okręgów i stycznego do prostej . Rozważ dwa przypadki.
Okręgi i są styczne zewnętrznie oraz oba są styczne wewnętrznie do okręgu . Środki wszystkich trzech okręgów leżą na jednej prostej, a cięciwa okręgu jest wspólną styczną okręgów i . Oblicz długość odcinka jeżeli promienie okręgów i są odpowiednio równe i .
Na średnicy półokręgu wybrano punkt i na odcinkach i jako na średnicach skonstruowano półokręgi i . Odcinek jest odcinkiem wspólnej stycznej półokręgów i . Oblicz długość odcinka jeżeli promienie półokręgów i są odpowiednio równe i .
W kąt o mierze wpisano ciąg kół w taki sposób, że pierwsze koło ma promień i jest styczne do ramion kąta a każde następne koło ma mniejszy promień i jest styczne do poprzedniego koła oraz do ramion kąta. Oblicz sumę pól kół tego ciągu.
Dany jest okrąg o średnicy i środku oraz dwa okręgi o średnicach i . Okrąg o środku i promieniu ma z każdym z danych okręgów dokładnie jeden punkt wspólny (zobacz rysunek). Wykaż, że .
Z punktu poprowadzono styczną do okręgu o środku w punkcie oraz sieczną, która ma z tym okręgiem dwa punkty wspólne oraz . Wiadomo, że oraz . Oblicz miary kątów trójkąta .
W kąt o mierze wpisano pięć kół tak, że każde następne koło poza pierwszym, jest styczne zewnętrznie do koła poprzedniego. Oblicz ile razy suma pól wszystkich kół jest większa od pola najmniejszego koła.
Dwa styczne zewnętrznie okręgi o środkach i są styczne wewnętrznie do okręgu , przy czym punkty nie są współliniowe. Oblicz obwód trójkąta .
Dane dwa okręgi o środkach i są styczne zewnętrznie i jednocześnie są styczne wewnętrznie do okręgu o środku w punkcie . Wiedząc, że oraz promień okręgu o środku ma długość oblicz długość odcinka .
Promień okręgu wpisanego w wycinek koła o kącie środkowym ma długość 2. Oblicz pole tego wycinka.
Odległości środków dwóch okręgów od wierzchołka kąta są równe 8 i 12. Okręgi te są styczne zewnętrznie i każdy z nich jest styczny do obu ramion kąta. Oblicz długości ich promieni.
Zewnętrznie styczne okręgi o środkach i promieniach są styczne do prostej . Kąt między prostą przechodzącą przez środki okręgów i prostą ma miarę . Wyznacz długości promieni okręgów, jeśli wiadomo, że ich suma jest równa 24.
Dane są dwa okręgi zewnętrznie styczne oraz styczne wewnętrznie do trzeciego. Środki okręgów tworzą trójkąt równoramienny o bokach długości 1 i 2. Znajdź długości promieni tych okręgów (rozważ dwa przypadki).
W okrąg o promieniu 6 cm wpisano w sposób symetryczny cztery przystające okręgi. Oblicz ich promień.