Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Prawdopodobieństwo/Warunkowe i całkowite

Wyszukiwanie zadań

W fabryce obuwia pracuje pięć linii produkcyjnych produkujących ten sam model butów. W poniższej tabeli zawarto informacje o wydajności tych linii oraz o odsetku wadliwych par obuwia produkowanych przez każdą z nich.

Linia produkcyjna Wydajność Odsetek wadliwych par
I 60 par/godzinę 2%
II 50 par/godzinę 3%
III 40 par/godzinę 1%
IV 80 par/godzinę 3%
V 70 par/godzinę 2%

Wybieramy losowo jedną parę obuwia wyprodukowaną przez te linie produkcyjne. Jakie jest prawdopodobieństwo, że wybrana para nie okaże się wadliwa?

W urnie jest 7 kul czarnych i 3 białe. Losujemy z tej urny pięć razy po jednej kuli i po każdym losowaniu wkładamy wylosowaną kulę z powrotem do urny oraz dokładamy do urny dwie kule w kolorze wylosowanej kuli. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie dwa razy wylosujemy kulę białą.

W pierwszej urnie są kule czarne i białe, w drugiej 10 kul niebieskich i 15 kul zielonych, a w trzeciej – 14 kul niebieskich i 7 zielonych. Najpierw losujemy kulę z pierwszej urny, a następnie losujemy kulę z drugiej albo z trzeciej urny w zależności od tego, czy z pierwszej urny wylosowaliśmy odpowiednio kulę białą, czy czarną. Oblicz prawdopodobieństwo wylosowania czarnej kuli z pierwszej urny, jeżeli prawdopodobieństwo wylosowania według opisanego schematu kuli niebieskiej jest takie samo jak zielonej.

Rzucamy dwa razy kostką do gry. Jeśli suma oczek wyrzuconych na obu kostkach jest liczbą podzielną przez 3, losujemy jedną liczbę ze zbioru Z 1 = {1,2,3 ,... ,2n + 7} , w przeciwnym przypadku losujemy jedną liczbę ze zbioru Z = {1,2 ,3,...,2n} 2 . Oblicz prawdopodobieństwo wylosowania liczby parzystej.

Ze zbioru wszystkich liczb naturalnych czterocyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest podzielna przez 4 lub 9, jeśli wiadomo, że jest ona podzielna przez 6.

Dwóch strzelców strzela do celu. Jeden trafia z prawdopodobieństwem 0,6, a drugi trafia z prawdopodobieństwem 0,8. Oblicz prawdopodobieństwo, że jeśli wykonają po jednym strzale, to cel zostanie trafiony dokładnie 1 raz.

Dwa zakłady pracy produkują takie same akumulatory, przy czym stosunek liczby akumulatorów produkowanych dziennie przez pierwszy zakład do liczby akumulatorów produkowanych dziennie przez drugi zakład jest równy 2 3 . Badania wykazały, że niektóre z wyprodukowanych akumulatorów mają podwyższoną pojemność, przy czym własność tą ma 40% akumulatorów pochodzących z pierwszego zakładu i 30% akumulatorów pochodzących z drugiego zakładu. Oblicz jakie jest prawdopodobieństwo, że losowo wybrany akumulator pochodzący z dziennej produkcji obu zakładów nie ma podwyższonej pojemności.

W pudełku umieszczono n kul (n ≥ 3 ) wśród których dokładnie 2 kule są czarne, a pozostałe kule są białe. Z tego pudełka losujemy jedną kulę i odkładamy ją na bok. Jeżeli wylosowana kula jest biała, to do pudełka wrzucamy kulę czarną, a gdy wylosowana kula jest czarna, to do pudełka wrzucamy kulę białą. Po przeprowadzonej w ten sposób zmianie zawartości prawdopodobieństwo wylosowania kuli białej z tego pudełka jest równe 37 50 . Oblicz n .

Dane są dwie urny z kulami. W każdej z urn jest siedem kul. W pierwszej urnie są trzy kule czarne i cztery kule białe, w drugiej urnie są dwie kule czarne i pięć białych. Rzucamy jeden raz symetryczną monetą. Jeżeli wypadnie reszka, to losujemy jedną kulę z pierwszej urny, w przeciwnym przypadku – jedną kulę z drugiej urny. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że w tym doświadczeniu wylosujemy kulę białą.

Każda z urn oznaczonych liczbami 1, 2, 3 zawiera po 3 kule czarne i 4 białe, a każda urna oznaczona liczbami 4, 5, 6 zawiera po 3 czarne i 2 białe kule. Rzucamy sześcienną kostką do gry, a następnie z urny o numerze równym liczbie wyrzuconych oczek losujemy bez zwracania 2 kule. Co jest bardziej prawdopodobne: wylosowanie dwóch kul czarnych, czy dwóch kul białych?

W pudełku znajduje się n > 2 sześciennych kostek do gry, przy czym k spośród tych kostek (k > 0 i k < n ) ma na dwóch ściankach jedno oczko, a na pozostałych czterech ściankach sześć oczek. Wybieramy losowo jedną z tych kostek i wykonujemy nią cztery kolejne rzuty. Oblicz jakie jest prawdopodobieństwo, że wybrana kostka miała jedno oczko na dwóch ściankach, jeżeli wiadomo, że w każdym z czterech wykonanych rzutów otrzymano ściankę z sześcioma oczkami.

Oblicz prawdopodobieństwo warunkowe, że w trzykrotnym rzucie symetryczną sześcienną kostką do gry otrzymamy co najmniej jedną „jedynkę”, pod warunkiem że otrzymamy co najmniej jedną „szóstkę”.

Na stu mężczyzn ośmiu, zaś na tysiąc kobiet pięć ma zaburzenie rozpoznawania barw. Z grupy, w której stosunek liczby mężczyzn do liczby kobiet wynosi 7:11 wybrano losowo jedną osobę. Jakie jest prawdopodobieństwo, że wylosowana osoba prawidłowo rozpoznaje kolory?

W pierwszej urnie umieszczono 3 kule białe i 5 kul czarnych, a w drugiej urnie 7 kul białych i 2 kule czarne. Losujemy jedną kulę z pierwszej urny, przekładamy ją do urny drugiej i dodatkowo dokładamy do urny drugiej jeszcze dwie kule tego samego koloru, co wylosowana kula. Następnie losujemy dwie kule z urny drugiej. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że obie kule wylosowane z drugiej urny będą białe.

Ukryj Podobne zadania

W pierwszej urnie są 4 kule zielone i 5 czerwonych, w drugiej urnie 3 zielone i 6 czerwonych. Z pierwszej urny losujemy jedną kulę i przekładamy ją do drugiej urny. Następnie do drugiej urny dokładamy 2 kule tego samego koloru co wylosowana kula. Losujemy dwie kule z drugiej urny. Oblicz prawdopodobieństwo, że obie będą zielone.

W pierwszej urnie umieszczono 5 kul białych i 4 kule czarne, a w drugiej urnie 6 kul białych i 7 kul czarnych. Losujemy jedną kulę z pierwszej urny, przekładamy ją do urny drugiej i dodatkowo wyjmujemy z drugiej urny jeszcze dwie kule koloru innego, niż kolor wylosowanej kuli. Następnie losujemy dwie kule z urny drugiej. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że obie kule wylosowane z drugiej urny będą czarne.

Siedmiokrotnie rzucamy kostką do gry. Wśród otrzymanych wyników jest 5 czwórek. Jakie jest prawdopodobieństwo, że w pierwszym rzucie otrzymaliśmy czwórkę?

Ukryj Podobne zadania

Ośmiokrotnie rzucamy sześcienną kostką do gry. Wśród otrzymanych wyników jest dokładnie 5 piątek. Jakie jest prawdopodobieństwo, że w ostatnim rzucie otrzymaliśmy piątkę?

Sześciokrotnie rzucamy kostką do gry. Wśród otrzymanych wyników są dokładnie trzy dwójki. Jakie jest prawdopodobieństwo, że w pierwszym rzucie otrzymaliśmy piątkę?

Rzucamy sześcienną kostką do gry tak długo, aż otrzymamy co najmniej dwie nieparzyste liczby oczek, albo 10 parzystych liczb oczek. Oblicz prawdopodobieństwo, że w przeprowadzonym doświadczeniu otrzymaliśmy liczbę oczek równą 5, przy założeniu, że otrzymaliśmy tylko jedną nieparzystą liczbę oczek.

Dwie maszyny wykonują detale: pierwsza maszyna 75%, a druga 25%. Wśród detali maszyny pierwszej 95%, a maszyny drugiej 80% odpowiada wymogom technicznym. Wylosowano jeden detal, który odpowiada wymogom technicznym. Jakie jest prawdopodobieństwo, że detal ten pochodzi z maszyny drugiej?

Pewne doświadczenie polega na rzucie monetą i wylosowaniu jednej karty. Jeśli wypadnie reszka, to karta jest losowania z talii 52 kart, a jeśli wypadnie orzeł, to kartę losujemy z talii, z której usunięto wszystkie figury. Oblicz jakie jest prawdopodobieństwo:

  • wylosowania króla;
  • wylosowania króla trefl;
  • wylosowania dwójki;
  • wylosowania dwójki pik.

W dwóch pudełkach umieszczono po pięć kul, przy czym w pierwszym pudełku: 2 kule białe i 3 kule czerwone, a w drugim pudełku: 1 kulę białą i 4 kule czerwone. Z pierwszego pudełka losujemy jedną kulę i bez oglądania wkładamy ją do drugiego pudełka. Następnie losujemy jedną kulę z drugiego pudełka. Oblicz prawdopodobieństwo wylosowania kuli białej z drugiego pudełka.

W pewnym przedsiębiorstwie 9% wyrobów jest brakami. Na 100 dobrych wyrobów 70 jest pierwszego gatunku. Jakie jest prawdopodobieństwo, że wylosowany wyrób jest pierwszego gatunku?

Strona 3 z 4
spinner