Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe

Wyszukiwanie zadań

Odcinek CD jest wysokością trójkąta ABC , w którym  1 |AD | = |CD | = 2|BC | (zobacz rysunek). Okrąg o środku C i promieniu CD jest styczny do prostej AB . Okrąg ten przecina boki AC i BC trójkąta odpowiednio w punktach K i L .


PIC


Zaznaczony na rysunku kąt α wpisany w okrąg jest równy
A) 37,5∘ B) 45∘ C) 52 ,5 ∘ D) 60∘

Ukryj Podobne zadania

Odcinek CD jest wysokością trójkąta równoramiennego ABC , w którym |∡CBD | = 34∘ (zobacz rysunek). Okrąg o środku C i promieniu CD jest styczny do prostej AB . Okrąg ten przecina boki AC i BC trójkąta odpowiednio w punktach K i L .


ZINFO-FIGURE


Zaznaczony na rysunku kąt α wpisany w okrąg jest równy
A) 56∘ B) 6 0∘ C) 68∘ D) 58∘

Rozwiązaniem równania  2 (x − 1)(2x − 1)x = 0 nie jest liczba
A) log 51 B) lo g39 C)  √ -- log 2 2 D) log 2 0,5

Ukryj Podobne zadania

Rozwiązaniem równania  2 (x − 4)(3x − 1 )(x+ 1) = 0 nie jest liczba
A) log 50,2 B) lo g24 C) log √33- 3 D) log 16 0,5

Okrąg o równaniu  2 2 (x + 1 ) + (y + 2) = 2 :
A) nie przecina osi Ox ,
B) nie przecina osi Oy ,
C) przechodzi przez początek układu współrzędnych,
D) przechodzi przez punkt (− 1;− 2) .

Ukryj Podobne zadania

Okrąg o równaniu  2 2 (x + 2 ) + (y + 1) = 2 :
A) nie przecina osi Ox ,
B) nie przecina osi Oy ,
C) przechodzi przez początek układu współrzędnych,
D) przechodzi przez punkt (− 2;− 1) .

Wyrażenie  (3 )50(7)40 W = 7 3 jest równe
A) 1 B) ( ) 3 10 7 C) (3)90 7 D) (3)2000 7

Ukryj Podobne zadania

Wyrażenie  (5 )70(9)60 W = 9 5 jest równe
A) 1 B) ( ) 5 130 9 C) (5)10 9 D) (5)4200 9

Wyrażenie  ( )40( )30 W = 34 43 jest równe
A) ( 3)10 4 B) ( 3)70 4 C) 1 D) (3 )1200 4

Wyrażenie  ( )30( )40 W = 141 411 jest równe
A) 1 B) ( ) 10 114 C) ( ) 70 11 4 D) ( )10 4- 11

Punkt  ′ P = (3,− 3) jest obrazem punktu P = (1,3) w jednokładności o środku w punkcie S = (− 2,12) . Skala tej jednokładności jest równa
A) 3 5 B) 5 3 C) 2 D) 3

Ukryj Podobne zadania

Punkt  ′ P = (7,5) jest obrazem punktu P = (1,2 ) w jednokładności o środku w punkcie S = (− 7,− 2) . Skala tej jednokładności jest równa
A) 4 7 B) 3 4 C) 3 D) 7 4

Ze zbioru cyfr {1,2 ,3,4,5,6,7} losujemy kolejno bez zwracania dwie cyfry i zapisujemy je, tworząc liczbę dwucyfrową. Ile jest możliwości utworzenia w ten sposób liczby podzielnej przez 3?
A) 6 B) 12 C) 14 D) 15

Ukryj Podobne zadania

Ze zbioru cyfr {2 ,3,4,6} losujemy kolejno ze zwracaniem trzy cyfry i zapisujemy je, tworząc liczbę trzycyfrową. Ile jest możliwości utworzenia w ten sposób liczby podzielnej przez 3?
A) 10 B) 16 C) 22 D) 24

Pole powierzchni całkowitej walca, którego przekrojem osiowym jest kwadrat o boku długości 4, jest równe


PIC


A) 256 π B) 12 8π C) 48 π D) 24π

Ukryj Podobne zadania

Pole powierzchni całkowitej walca, którego przekrojem osiowym jest kwadrat o boku długości 6, jest równe


PIC


A) 54π B) 36π C) 28 8π D) 576π

W ciągu arytmetycznym (an) pierwszy wyraz jest równy − 3 , zaś a145 = 215 7 . Różnicą tego ciągu jest liczba
A) 13 B) 14 C) 15 D) 16

Ukryj Podobne zadania

W ciągu arytmetycznym (an) pierwszy wyraz jest równy 45, zaś a133 = 2157 . Różnicą tego ciągu jest liczba
A) 13 B) 14 C) 15 D) 16

W ciągu arytmetycznym (an) pierwszy wyraz jest równy 32, zaś a145 = 2048 . Różnicą tego ciągu jest liczba
A) 13 B) 14 C) 15 D) 16

Równanie 2(k − x) = 8 − 2x z niewiadomą x ma nieskończenie wiele rozwiązań dla
A) k = 2 B) k = 4 C) k = 8 D) k = 0

Ukryj Podobne zadania

Równanie 3(k − x) = 6 − 3x z niewiadomą x ma nieskończenie wiele rozwiązań dla
A) k = 3 B) k = 1 C) k = 0 D) k = 2

Który wyraz ciągu (an) o wyrazie ogólnym  5n+-3 an = 3n− 1 jest równy 2?
A) piąty B) siedemnasty C) siódmy D) dziewiąty

Ukryj Podobne zadania

Który wyraz ciągu (an) o wyrazie ogólnym  4n+-5 an = 2n− 3 jest równy 3?
A) piąty B) siedemnasty C) siódmy D) dziewiąty

Dany jest ciąg o wzorze ogólnym  35 an = n + 2 . Wartość 5 2 ma wyraz
A) szesnasty B) trzydziesty pierwszy C) siedemdziesiąty D) osiemnasty

Wskaż postać iloczynową trójmianu  2 y = 3x − 3x − 6 .
A) 3(x + 1)(x − 2 ) B) 3(x − 1)(x + 2) C) − 3(x + 1)(x + 2) D) (x − 2)(x + 1 )

Ukryj Podobne zadania

Wskaż postać iloczynową trójmianu  2 y = 3x + 3x − 6 .
A) 3(x + 1)(x − 2 ) B) 3(x − 1)(x + 2) C) − 3(x + 1)(x + 2) D) (x + 2)(x − 1 )

W rombie o boku długości  √ -- 6 2 kąt rozwarty ma miarę  ∘ 15 0 . Iloczyn długości przekątnych tego rombu jest równy
A) 24 B) 72 C) 36 D)  √ -- 36 2

Ukryj Podobne zadania

W rombie o boku długości  √ -- 8 2 kąt rozwarty ma miarę  ∘ 15 0 . Iloczyn długości przekątnych tego rombu jest równy
A) 128 B) 24 C) 64 D)  √ -- 64 2

W kapeluszu znajdują się króliki białe i szare. Królików szarych jest trzy razy więcej niż białych. Prawdopodobieństwo wyciągnięcia z kapelusza królika białego jest równe 28 . Zatem prawdopodobieństwo wyciągnięcia z kapelusza królika szarego jest równe
A) 1 2 B) 1- 12 C) -4 16 D) 3 4

Ukryj Podobne zadania

W woreczku znajdują się piłki białe i szare. Piłek szarych jest trzy razy więcej niż białych. Prawdopodobieństwo wyciągnięcia z woreczka piłki białej jest równe 0,25. Zatem prawdopodobieństwo wyciągnięcia z woreczka piłki szarej jest równe
A) 0,75 B) 1 3 C) 0,25 D) 0,8

W kapeluszu znajdują się króliki białe i szare. Prawdopodobieństwo wyciągnięcia z kapelusza królika szarego jest równe 47 . Zatem prawdopodobieństwo wyciągnięcia z kapelusza królika białego jest równe
A) 4 7 B) 0,75 C) 7 9 D) 3 7

W pewnej szkole liczącej 500 uczniów 80% uczy się języka angielskiego, 49% – języka rosyjskiego, a 37% uczy się obu tych języków. Wynika stąd, że liczba uczniów, którzy nie uczą się żadnego z tych języków, to
A) 50 B) 40 C) 37 D) 167

Ukryj Podobne zadania

W pewnej szkole liczącej 400 uczniów 83% uczy się języka angielskiego, 51% – języka rosyjskiego, a 42% uczy się obu tych języków. Wynika stąd, że liczba uczniów, którzy nie uczą się żadnego z tych języków, to
A) 56 B) 48 C) 168 D) 32

W pewnej szkole liczącej 600 uczniów 76% uczniów uczy się języka angielskiego, 38% – języka niemieckiego, a 26% uczy się obu tych języków. Wynika stąd, że liczba uczniów, którzy nie uczą się żadnego z tych języków, to
A) 72 B) 60 C) 108 D) 96

Granica  x2−x−2- xl→im−1 x− 1
A) jest równa − ∞ B) jest liczbą rzeczywistą C) nie istnieje D) jest równa + ∞

Ukryj Podobne zadania

Granica  x2−2x−8- xl→im−2 2−x
A) jest liczbą rzeczywistą B) nie istnieje C) jest równa − ∞ D) jest równa + ∞

Granica  x2−x−2- xl→im−1 1−x
A) jest liczbą rzeczywistą B) jest równa + ∞ C) nie istnieje D) jest równa − ∞

Granica  x2−x−-2 lxi→m2 x+2
A) jest równa − ∞ B) jest równa + ∞ C) jest liczbą rzeczywistą D) nie istnieje

Granica  x2+x−6- xl→im−3 3−x
A) jest równa + ∞ B) jest równa − ∞ C) jest liczbą rzeczywistą D) nie istnieje

Granica  x2+x−2- xl→im−2 2−x
A) jest liczbą rzeczywistą B) jest równa − ∞ C) nie istnieje D) jest równa + ∞

Granica  x2−x−6- xl→im−2 x− 2
A) jest liczbą rzeczywistą B) jest równa − ∞ C) nie istnieje D) jest równa + ∞

Granica  x2−2x−8- xl→im−2 x−2
A) jest liczbą rzeczywistą B) jest równa − ∞ C) nie istnieje D) jest równa + ∞

W tabeli poniżej przedstawione są wyniki pracy klasowej w dwóch klasach pierwszych.

Ocena 3,252,754,25425,253,754,751352,2565,75
Liczba ocen 2 5 2 15 1 3 2 143 1 2 3

Mediana ocen w tych dwóch klasach jest równa
A) 4 B) 3 C) 3,25 D) 3,75

Kąt α jest rozwarty i tg α = −2 . Wobec tego
A)  √- cosα = − -5- 5 B)  √ - cos α = --5 5 C)  √10- co sα = 10 D)  √-2 cosα = 2

Ukryj Podobne zadania

Kąt α jest rozwarty i tg α = −2 . Wobec tego
A)  √ - sin α = − 2-5- 5 B)  √- sin α = 2-5- 5 C)  √-5 sin α = 5 D)  √5- sin α = − 5

Kąt α jest rozwarty i  7- tg α = − 24 . Wobec tego
A) c osα = − 725 B) cos α = 275 C) co sα = 24- 25 D) co sα = − 24- 25

Kąt α jest rozwarty i  7- tg α = − 24 . Wobec tego
A) sin α = − 275 B) sin α = 725 C) sin α = 24 25 D) sin α = − 24 25

Który z podanych ciągów jest ciągiem geometrycznym?
A) (− 4,− 3,− 2) B) (1,3,− 9) C) (2,6,18) D) ( ) 1, 1, 1 2 3 6

Pole czworokąta ABCD jest równe 9 √ -- 2 + 3 3 . Ponadto:  √ -- |AB | = |BC | = 3 2 ,  √ -- |AD | = 2 3 , |∡ABC | = 6 0∘ , |∡ADC | = 120∘ (zobacz rysunek).


ZINFO-FIGURE


Długość boku CD jest równa
A)  √ -- 3 − 3 B)  √ -- 6− 2 2 C) 3√ 3- D) 2− √ 3-

Strona 156 z 184
spinner