Liczba krawędzi graniastosłupa jest o 10 większa od liczby jego ścian. Ile wierzchołków ma ten graniastosłup?
A) 6 B) 18 C) 24 D) 12
/Szkoła średnia/Zadania testowe/Geometria/Stereometria
Liczba wszystkich krawędzi graniastosłupa jest o 10 większa od liczby wszystkich jego ścian bocznych. Stąd wynika, że podstawą tego graniastosłupa jest
A) czworokąt B) pięciokąt C) sześciokąt D) dziesięciokąt
Liczba krawędzi graniastosłupa jest o 8 większa od liczby jego ścian. Ile wierzchołków ma ten graniastosłup?
A) 5 B) 15 C) 10 D) 16
Liczba wszystkich krawędzi graniastosłupa jest o 12 większa od liczby wszystkich jego ścian bocznych. Stąd wynika, że podstawą tego graniastosłupa jest
A) czworokąt B) pięciokąt C) sześciokąt D) dziesięciokąt
Kąt rozwarcia stożka ma miarę , a tworząca tego stożka ma długość 6. Promień podstawy stożka jest równy
A) 3 B) 6 C) D)
Kąt rozwarcia stożka ma miarę , a tworząca tego stożka ma długość 8. Promień podstawy stożka jest równy
A) B) 4 C) D)
Wysokość ściany bocznej ostrosłupa prawidłowego sześciokątnego jest 2 razy dłuższa od krawędzi jego podstawy. Stosunek pola powierzchni bocznej tego ostrosłupa do pola jego podstawy jest równy
A) B) C) 1 D)
Wysokość ściany bocznej ostrosłupa prawidłowego sześciokątnego jest 3 razy dłuższa od krawędzi jego podstawy. Stosunek pola powierzchni bocznej tego ostrosłupa do pola jego podstawy jest równy
A) B) C) D)
Pięć identycznych metalowych stożków o promieniu podstawy przetopiono na jeden walec, którego wysokość jest równa i jest dwa razy krótsza od jego promienia podstawy. Gdyby te same stożki przetopiono na kule o promieniu , to ile takich kul by otrzymano?
A) 32 B) 16 C) 8 D) 24
Wysokość walca jest równa 2, a cosinus kąta (zobacz rysunek) jest równy .
Pole powierzchni bocznej tego walca jest równe
A) B) C) D)
Jeżeli oznacza miarę kąta między przekątną sześcianu a przekątną ściany bocznej tego sześcianu (zobacz rysunek), to
A) B) C) D)
Dany jest sześcian . Sinus kąta nachylenia przekątnej tego sześcianu do płaszczyzny podstawy (zobacz rysunek) jest równy
A) B) C) D)
Jeżeli oznacza miarę kąta między przekątną sześcianu a przekątną ściany bocznej tego sześcianu (zobacz rysunek), to
A) B) C) D)
Jeżeli oznacza miarę kąta między przekątnymi ścian sześcianu (zobacz rysunek), to
A) B) C) D)
Zbiór punktów wspólnych kuli i prostej może być
A) zbiorem dwuelementowym B) zbiorem jednoelementowym C) okręgiem D) kołem
Zbiór punktów wspólnych kuli i płaszczyzny może być
A) zbiorem dwuelementowym B) okręgiem C) zbiorem jednoelementowym D) sferą
Ostrosłup ma 12 krawędzi. Liczba wszystkich wierzchołków tego ostrosłupa jest równa
A) 12 B) 9 C) 8 D) 7
Jeśli ostrosłup ma 50 krawędzi, to liczba jego ścian jest równa
A) 50 B) 26 C) 25 D) 22
Ostrosłup, który ma 12 krawędzi, ma
A) 6 ścian B) 7 ścian C) 8 ścian D) 9 ścian
Jeżeli ostrosłup ma 10 krawędzi, to liczba ścian bocznych jest równa
A) 5 B) 7 C) 8 D) 10
Dany jest sześcian o krawędzi długości 5. Wewnątrz sześcianu znajduje się punkt (zobacz rysunek).
Suma odległości punktu od wszystkich ścian sześcianu jest równa
A) 15 B) 20 C) 25 D) 30
Powierzchnia boczna walca o objętości po rozwinięciu jest prostokątem, w którym przekątna tworzy z wysokością walca kąt o mierze . Promień podstawy tego walca jest równy
A) B) C) D)
Krawędź podstawy ostrosłupa prawidłowego czworokątnego jest dwa razy dłuższa od jego wysokości. Kąt nachylenia ściany bocznej do podstawy ma miarę
A) B) C) D)
Dany jest prostopadłościan , w którym podstawy i są kwadratami o boku długości 6. Przekątna tego prostopadłościanu tworzy z przekątną ściany bocznej kąt o mierze (zobacz rysunek).
Przekątna tego prostopadłościanu ma długość równą
A) B) C) 12 D)
Przekrój osiowy walca jest kwadratem o boku długości 6. Objętość tego walca jest równa
A) B) C) D)
Przekrój osiowy walca jest kwadratem o boku 10. Objętość tego walca jest równa
A) B) C) D)
Przekrój osiowy walca jest kwadratem o boku długości 6. Objętość tego walca jest równa
A) B) C) D)
Przekrój osiowy walca jest kwadratem o boku długości 8. Objętość tego walca jest równa
A) B) C) D)
Jeżeli przekrój osiowy walca jest kwadratem o boku 4, to objętość walca jest równa
A) B) C) D)
Stosunek pól powierzchni dwóch kul jest równy 1:9. Wobec tego stosunek objętości tych kul jest równy
A) 1:3 B) 1:9 C) 1:27 D) 1:81
Stosunek pól powierzchni dwóch kul jest równy 1:16. Wobec tego stosunek objętości tych kul jest równy
A) 1:256 B) 1:64 C) 1:16 D) 1:4
Stosunek pól powierzchni dwóch kul jest równy 1:4. Wobec tego stosunek objętości tych kul jest równy
A) 1:2 B) 1:8 C) 1:4 D) 1:16
Jeśli promień kuli zwiększymy o 30%, to pole powierzchni kuli wzrośnie o:
A) 30% B) 60% C) 69% D) ponad 100%
Jeśli promień kuli zmniejszymy o 50%, to pole powierzchni kuli zmaleje o:
A) 30% B) 60% C) 75% D) ponad 90%
Jeśli promień kuli zwiększymy o 50%, to pole powierzchni kuli wzrośnie o:
A) 30% B) 60% C) 69% D) ponad 100%
Dany jest prostopadłościan , w którym prostokąty i są jego podstawami. Odcinek jest przekątną tego prostopadłościanu. Na którym rysunku prawidłowo oznaczono i podpisano kąt pomiędzy przekątną prostopadłościanu a jego ścianą boczną ?
Dany jest graniastosłup prawidłowy czworokątny, w którym krawędź podstawy ma długość 15. Przekątna graniastosłupa jest nachylona do płaszczyzny podstawy pod takim, że . Długość przekątnej tego graniastosłupa jest równa
A) B) 45 C) D) 10
Dany jest graniastosłup prawidłowy czworokątny, w którym krawędź podstawy ma długość 12. Przekątna graniastosłupa jest nachylona do płaszczyzny podstawy pod takim, że . Długość przekątnej tego graniastosłupa jest równa
A) 18 B) C) D) 8
W ostrosłupie prawidłowym czworokątnym wszystkie krawędzie mają jednakową długość, a pole powierzchni całkowitej tego ostrosłupa jest równe . Wobec tego długość wysokości tego ostrosłupa jest równa
A) B) 2 C) D)
Pole podstawy stożka jest trzy razy mniejsze od jego pola powierzchni bocznej. Wówczas kąt rozwarcia stożka spełnia warunek
A) B) C) D)
Pole powierzchni całkowitej sześcianu jest równe . Długość przekątnej podstawy tego sześcianu jest równa
A) B) C) D)
Pole powierzchni całkowitej sześcianu jest równe . Długość przekątnej podstawy tego sześcianu jest równa
A) B) C) D)