Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań

Wszystkich liczb naturalnych pięciocyfrowych, w których zapisie dziesiętnym występują tylko cyfry 0, 5, 7, jest
A) 53 B) 2 ⋅43 C) 2 ⋅34 D) 35

Funkcja kwadratowa f jest określona wzorem  2 f (x) = ax + bx + 1 , gdzie a oraz b są pewnymi liczbami rzeczywistymi, takimi, że a < 0 i b > 0 . Na jednym z rysunków A–D przedstawiono fragment wykresu tej funkcji w kartezjańskim układzie współrzędnych (x ,y) . Fragment wykresu funkcji f przedstawiono na rysunku


ZINFO-FIGURE


Trzywyrazowy ciąg (12,6,2m − 1) jest geometryczny. Dokończ zdanie tak, aby było prawdziwe. Ciąg (an) jest

A) rosnący,B) malejący

oraz

1)  1 m = 2 ,2) m = 2 ,3) m = 3 ,

Rysunek przedstawia fragment wykresu funkcji  -1 f (x) = x2 .


PIC


Przeprowadzono prostą równoległą do osi Ox , która przecięła wykres tej funkcji w punktach A i B . Niech C = (3,− 1) . Wykaż, że pole trójkąta ABC jest większe lub równe 2.

Trapez równoramienny ABCD o ramieniu długości 6 wpisany jest w okrąg, przy czym dłuższa podstawa AB trapezu, o długości 12, jest średnicą tego okręgu. Przekątne AC i BD trapezu przecinają się w punkcie P . Oblicz pole koła wpisanego w trójkąt ABP .

Wszystkie wyrazy ciągu geometrycznego (an) , określonego dla n ≥ 1 , są liczbami dodatnimi. Drugi wyraz tego ciągu jest równy 162, a piąty wyraz jest równy 48. Oznacza to, że iloraz tego ciągu jest równy
A) 2 3 B) 3 4 C) 1 3 D) 1 2

Dane są dwa okręgi: okrąg o środku w punkcie O i promieniu 5 oraz okrąg o środku w punkcie P i promieniu 3. Odcinek OP ma długość 16. Prosta AB jest styczna do tych okręgów w punktach A i B . Ponadto prosta AB przecina odcinek OP w punkcie K (zobacz rysunek).


PIC


Wtedy
A) |OK | = 6 B) |OK | = 8 C) |OK | = 10 D) |OK | = 12

Dany jest ciąg geometryczny (an) , określony dla każdej liczby naturalnej n ≥ 1 . Drugi wyraz tego ciągu oraz iloraz ciągu (an) są równe 2. Suma pięciu początkowych kolejnych wyrazów tego ciągu jest równa
A) 1 B) 11 C) 21 D) 31

W kartezjańskim układzie współrzędnych (x ,y) proste o równaniach:

  •  √ -- y = 3x + 6

  •  √ -- y = − 3x + 6

  •  √1- y = − 3x − 2

przecinają się w punktach, które są wierzchołkami trójkąta KLM . Trójkąt KLM jest

A) równoramienny,B) prostokątny,

ponieważ

1)Ox przechodzi przez jeden z wierzchołków tego trójkąta i środek jednego z boków tego trójkąta.
2) dwie z tych prostych są prostopadłe.
3) Oy zawiera dwusieczną tego trójkąta.

Podstawą graniastosłupa prostego jest prostokąt o bokach długości 3 i 4. Kąt α , jaki przekątna tego graniastosłupa tworzy z jego podstawą, jest równy 45∘ (zobacz rysunek).


ZINFO-FIGURE


Wysokość graniastosłupa jest równa
A) 5 B)  √ -- 3 2 C)  √ -- 5 2 D) 5√-3 3

Punkty A ,B,C leżące na okręgu o środku S są wierzchołkami trójkąta równobocznego. Miara zaznaczonego na rysunku kąta środkowego ASB jest równa


PIC


A) 1 20∘ B) 90∘ C) 60 ∘ D) 30∘

Strona 107 z 111
spinner