Liczba jest równa
A) B) C) D)
/Szkoła średnia
Podstawą ostrosłupa jest trójkąt równoramienny o podstawie i kącie pomiędzy ramionami. Krawędź jest wysokością ostrosłupa, a kąt nachylenia ściany do podstawy ostrosłupa jest równy . Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa.
Funkcja kwadratowa jest określona wzorem . Liczby są różnymi miejscami zerowymi funkcji . Zatem
A) B) C) D)
Para liczb i jest rozwiązaniem układu równań gdy
A) B) C) D)
W trójkącie punkt leży na boku , a punkt leży na boku . Odcinek jest równoległy do boku , a ponadto , i (zobacz rysunek).
Długość odcinka jest równa
A) 22 B) 20 C) 12 D) 11
Liczba jest równa
A) B) C) D)
Wartość wyrażenia jest równa
A) B) C) D) 4
W kartezjańskim układzie współrzędnych prosta o równaniu przecina parabolę o równaniu w punktach oraz . Odcinek jest średnicą okręgu . Punkt leży na okręgu nad prostą , a kąt jest ostry i ma miarę taką, że (zobacz rysunek).
Oblicz współrzędne punktu .
Funkcja jest określona za pomocą tabeli
0 | 1 | 2 | |||
0 | 1 | 0 | 3 |
Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.
Funkcja ma dokładnie jedno miejsce zerowe. | P | F |
Wykres funkcji jest symetryczny względem osi . | P | F |
Wszystkich liczb naturalnych czterocyfrowych parzystych, w których występują wyłącznie cyfry 1, 2, 3, jest
A) 54 B) 81 C) 8 D) 27
Rozwiąż równanie .
Suma długości dwóch boków trójkąta równa się 4, a kąt między tymi bokami ma miarę . Oblicz najmniejszą wartość sumy kwadratów długości wszystkich boków tego trójkąta.
W kartezjańskim układzie współrzędnych przedstawiono fragment paraboli, która jest wykresem funkcji kwadratowej (zobacz rysunek). Wierzchołek tej paraboli oraz punkty przecięcia paraboli z osiami układu współrzędnych mają obie współrzędne całkowite.
Funkcja kwadratowa jest określona za pomocą funkcji następująco: . Fragment wykresu funkcji przedstawiono na rysunku
Promień podstawy walca jest równy wysokości tego walca. Sinus kąta (zobacz rysunek) jest równy
A) B) C) D) 1
W trójkącie prostokątnym o długościach przyprostokątnych 2 i 5 cosinus większego z kątów ostrych jest równy
A) B) C) D)
Funkcja określona jest wzorem dla każdej liczby rzeczywistej . Wtedy liczba jest równa
A) B) C) D)
Punkty i leżą na okręgu o środku . Miary kątów , , są równe odpowiednio: , , (zobacz rysunek).
Wynika stąd, że miara kąta jest równa
A) B) C) D)
Wielomian jest równy iloczynowi
A) B) C) D)
Punkty dzielą okrąg na 4 równe łuki. Miara zaznaczonego na rysunku kąta wpisanego jest równa
A) B) C) D)
Dana jest funkcja określona wzorem
Równanie ma dokładnie
A) jedno rozwiązanie. B) dwa rozwiązania. C) cztery rozwiązania. D) pięć rozwiązań.