Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań

W ostrosłupie prawidłowym czworokątnym wszystkie krawędzie mają jednakową długość, a pole powierzchni całkowitej tego ostrosłupa jest równe  √ -- 4 + 4 3 . Wobec tego długość wysokości tego ostrosłupa jest równa
A) √ -- 6 B) 2 C) √ -- 3 D) √ -- 2

Jakim procentem koła jest pole wycinka koła zaznaczonego na rysunku?


PIC


A) 7,5% B) 15% C) 20% D) 25%

Ukryj Podobne zadania

Jakim procentem koła jest pole wycinka koła zaznaczonego na rysunku?


PIC


A) 7,5% B) 15% C) 20% D) 10%

Jakim procentem koła jest pole wycinka koła zaznaczonego na rysunku?


PIC


A) 5% B) 15% C) 20% D) 10%

W ostrosłupie prawidłowym trójkątnym kąt płaski przy wierzchołku ostrosłupa ma miarę α , zaś odległość wierzchołka podstawy od krawędzi bocznej, do której nie należy, jest równa d . Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa.

Wszystkie liczby parzyste z przedziału ⟨1,100 ⟩ , które nie są podzielne przez 4 ustawiamy w ciąg (an) .

  • Wyznacz wzór ciągu an i uzasadnij, że jest on arytmetyczny.
  • Oblicz sumę wszystkich wyrazów tego ciągu.

Dany jest okrąg  2 2 (x− 2) + (y− 1) = 3 . Oblicz pole trójkąta równobocznego wpisanego w ten okrąg.

Dany jest trapez prostokątny ABCD , gdzie  ∘ |∡DAB | = 90 ,  ∘ |∡ABD | = 30 , AB ∥ DC ,  √ -- |DB | = 2( 3 + 1) i |DC | = 2 .

  • Oblicz długość promienia okręgu wpisanego w trójkąt BDA .
  • Wyznacz sumę kwadratów sinusów kątów wewnętrznych trapezu ABCD .

Wierzchołki trójkąta ABC mają współrzędne: A = (− 6,4),B = (− 2,− 4),C = (3,1) . Napisz równanie okręgu, który jest styczny do prostej AC , a jego środek jest punktem przecięcia się wysokości trójkąta ABC .

Kąt α jest ostry i  2 cosα = 3 . Wartość wyrażenia  2 1+ sin α jest równa
A) 149 B) 59 C) 83 D) 5 3

Ukryj Podobne zadania

Kąt α jest ostry i  √3- co sα = 3 . Wtedy wartość wyrażenia  2 2 − sin α jest równa
A) 0 B) 23 C) 43 D) 1

Liczby logkx , logm x , logn x są kolejnymi wyrazami ciągu arytmetycznego, gdzie k,m ,n ,x są różnymi od jedności liczbami dodatnimi. Uzasadnij, że n 2 = (kn)logkm .

Znaleźć pole kwadratu wpisanego w trójkąt równoboczny o boku 4. Jakie pole ma koło opisane na tym kwadracie?

Średnia wieku w pewnej grupie studentów jest równa 23 lata. Średnia wieku tych studentów i ich opiekuna jest równa 24 lata. Opiekun ma 39 lat. Oblicz, ilu studentów jest w tej grupie.

Ukryj Podobne zadania

Średnia wieku w pewnej grupie uczniów jest równa 14 lat. Średnia wieku tych uczniów i ich opiekuna jest równa 16 lat. Opiekun ma 40 lat. Oblicz, ilu uczniów jest w tej grupie.

Ile jest liczb naturalnych trzycyfrowych, których kolejne cyfry tworzą ciąg geometryczny o ilorazie równym 2 lub 12 ?
A) 4 B) 16 C) 8 D) 9

Ukryj Podobne zadania

Ile jest liczb naturalnych czterocyfrowych, których kolejne cyfry tworzą ciąg arytmetyczny o różnicy 2 lub − 2 ?
A) 7 B) 6 C) 12 D) 9

Bok rombu ma taką samą długość jak przekątna kwadratu. Pole rombu jest równe polu kwadratu. Zatem kąt ostry tego rombu ma miarę
A) 75∘ B) 4 5∘ C) 60∘ D) 30∘

Ukryj Podobne zadania

Przekątna AC czworokąta ABCD wpisanego w okrąg jest średnicą tego okręgu (zobacz rysunek). Udowodnij, że |AB |2 + |BC |2 = |AD |2 + |DC |2 .


PIC


Wielomian  3 2 W (x) = x − (a+ b )x − (a − b )x − 8 jest podzielny przez dwumian (x+ 1) , a reszta z dzielenia wielomianu W (x) przez dwumian (x + 3) wynosi − 2 . Oblicz a i b , a następnie rozwiąż nierówność W (x) < 4 .

Wykaż, że dla dowolnej liczby m > 0 prawdziwa jest nierówność  3- 1 m + m ≥ 2 .

Ukryj Podobne zadania

Udowodnij, że dla dowolnej ujemnej liczby rzeczywistej x prawdziwa jest nierówność

4x + 1-≤ 4. x

Wykaż, że dla dowolnej liczby dodatniej x prawdziwa jest nierówność x + 4−x2x≥ 2 .

Za 4 lata Ula będzie miała dwa razy więcej lat niż miała 2 lata temu. Ile lat ma Ula?

Nierówność  2 2 4x + y − 8x+ 6y + 13 ≤ 0 przedstawia na płaszczyźnie
A) okrąg B) koło C) punkt D) zbiór pusty

Ukryj Podobne zadania

Nierówność  2 2 x + 4y − 6x+ 8y + 14 ≤ 0 przedstawia na płaszczyźnie
A) okrąg B) koło C) punkt D) zbiór pusty

Nierówność  2 2 x + 3y + 4x+ 6y + 7 ≤ 0 przedstawia na płaszczyźnie
A) punkt B) koło C) okrąg D) zbiór pusty

W pudełku jest 8 kul, z czego 5 białych i 3 czarne. Do tego pudełka dołożono n kul białych. Doświadczenie polega na losowaniu jednej kuli z tego pudełka. Prawdopodobieństwo, że będzie to kula biała, jest równe 1112 . Oblicz n .

Ukryj Podobne zadania

W pudełku jest 9 kul, z czego 7 białych i 2 czarne. Do tego pudełka dołożono n kul białych. Doświadczenie polega na losowaniu jednej kuli z tego pudełka. Prawdopodobieństwo, że będzie to kula biała, jest równe 2201 . Oblicz n .

Strona 425 z 461
spinner