Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań

Wartość wyrażenia  5 3 2 4 sin α + 2 sin α cos α + sin αco s α jest równa
A) sin2 α B) cos2α C) sin α D) cos α

Ukryj Podobne zadania

Wyrażenie  4 2 3 5 sin α cos α+ 2sin α cos α+ cos α jest równe
A) sin2 α B) cos2α C) sin α D) cos α

Wysokość rombu o boku długości 6 i kącie ostrym  ∘ 60 jest równa
A)  √ -- 3 3 B) 3 C)  √ -- 6 3 D) 6

Ukryj Podobne zadania

Wysokość rombu o boku długości 8 i kącie ostrym  ∘ 45 jest równa
A)  √ -- 2 2 B) 4 C)  √ -- 4 2 D) 8

Rozwiąż nierówność

 1 1 1 1+ --+ -2-+ -3-+ ...≤ 2, x x x

gdzie lewa strona jest sumą zbieżnego szeregu geometrycznego.

Dana jest funkcja  3 2 f(x ) = x − px + 5x − 2 .

  • Znajdź taką wartość p , dla której funkcja f osiąga minimum w punkcie x = 5 .
  • Dla wyznaczonego p podaj przedziały monotoniczności funkcji f .
Ukryj Podobne zadania

Do wykresu funkcji  a f(x) = x , dla x ⁄= 0 należy punkt A = (− 2,4) . Wtedy
A) a = − 2 B) a = 4 C) a = − 8 D) a = − 12

Funkcja f jest funkcją okresową o okresie podstawowym równym π . W przedziale ⟨− π2, π2-⟩ funkcja określona jest wzorem

 π f(x ) = |x |− --. 2
  • Wyznacz miejsca zerowe funkcji f .
  • Podaj zbiór wartości funkcji f .
  • Oblicz f(π ) oraz f(100) , przyjmując π = 3,1 4 .
  • Naszkicuj wykres funkcji f w przedziale ⟨5,9⟩ .

Prosta l przecina okrąg o środku S w punktach  ( √ -- 1) A = 1 − 2,− 8 i  ( ) √ -- 3 B = 1 + 2,− 8 . Punkt S leży na prostej l . Oblicz pole koła ograniczonego tym okręgiem.

Suma cyfr liczby trzycyfrowej podzielnej przez 5 jest równa 17. Jeśli zapiszemy cyfry tej liczby w przeciwnej kolejności, to otrzymamy liczbę o 99 większą od początkowej. Wyznacz liczbę początkową.

Ukryj Podobne zadania

Suma cyfr liczby trzycyfrowej podzielnej przez 5 jest równa 14. Jeśli zapiszemy cyfry tej liczby w przeciwnej kolejności, to otrzymamy liczbę o 198 większą od początkowej. Wyznacz liczbę początkową.

Suma cyfr liczby trzycyfrowej podzielnej przez 5 jest równa 15. Jeśli zapiszemy cyfry tej liczby w odwrotnej kolejności, to otrzymamy liczbę o 198 większą od początkowej. Wyznacz liczbę początkową.

Liczba 2 jest miejscem zerowym wielomianu W (x) . Wyznacz resztę z dzielenia tego wielomianu przez wielomian P (x) = x 2 − 3x + 2 jeśli wiadomo, że w wyniku dzielenia wielomianu W (x ) przez dwumian (x − 1) otrzymujemy resztę 5.

Wyznacz wszystkie całkowite wartości k , dla których funkcja  2 f (x) = k-−k−k−42-x2 − (k− 2 )x+ k− 4 osiąga minimum i ma dwa różne miejsca zerowe.

Dany jest równoległobok ABCD , w którym |AB | = 12 , |AD | = 7 oraz

sin ∡BAD + sin ∡ABC = 5-. 7

Oblicz pole równoległoboku ABCD .

Liczba  ∘ -1--- tg15 + tg15∘ jest równa
A) 4 B)  √ - 16--3 3 C) 1 D)  √ - 34-3

Ukryj Podobne zadania

Liczby naturalne a,b,c są większe od 1 oraz są kolejnymi wyrazami ciągu geometrycznego. Liczba x spełnia warunek

--1---+ --1---+ --1---= 1. lo gax lo gb x lo gcx

Wykaż, że x jest sześcianem liczby naturalnej.

Samochód jadący autostradą pali 5,6 litra paliwa na 100km. Napisz wzór funkcji s określającej przebytą drogę (w kilometrach) w zależnosci od zużytego paliwa p (w litrach).

Liczba  √ -- √2+-1 2 2− √2− 1 jest liczbą
A) wymierną B) niewymierną C) większą niż √ 2- D) naturalną

Ukryj Podobne zadania

Liczba √2+1- √ -- √2−1 − 2 jest liczbą
A) wymierną B) niewymierną C) mniejszą niż √ 2- D) naturalną

Udowodnij, że jeśli

  • x,y są liczbami rzeczywistymi, to x 2 + y 2 ≥ 2xy .
  • x,y,z są liczbami rzeczywistymi takimi, że x + y + z = 1 , to x2 + y2 + z2 ≥ 1 3 .

Dany jest sześciokąt foremny ABCDEF o polu równym  √ -- 6 3 (zobacz rysunek).


PIC


Pole trójkąta ABE jest równe
A) 6 B) 4√ 3- C) 2√ 3- D) 4

Dane są graniastosłup i ostrosłup o takich samych podstawach. Liczba wszystkich wierzchołków tego graniastosłupa jest o 9 większa od liczby wszystkich wierzchołków tego ostrosłupa. Podstawą każdej z tych brył jest
A) dziewięciokąt. B) ośmiokąt. C) osiemnastokąt. D) dziesięciokąt.

Ukryj Podobne zadania

Dane są graniastosłup i ostrosłup o takich samych podstawach. Liczba wszystkich wierzchołków tego graniastosłupa jest o 10 większa od liczby wszystkich wierzchołków tego ostrosłupa. Podstawą każdej z tych brył jest
A) dziewięciokąt. B) ośmiokąt. C) jedenastokąt. D) dziesięciokąt.

Na trójkącie ABC opisano okrąg i poprowadzono styczną do okręgu w punkcie A (zobacz rysunek obok).


PIC


Jeżeli |∡ABC | = 75∘ i kąt dopisany α jest równy 50∘ , to kąt CAB ma miarę:
A) 40∘ B) 4 5∘ C) 50∘ D)  ∘ 55

Strona 456 z 461
spinner