Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Równania/Wielomianowe

Wyszukiwanie zadań

Jednym z pierwiastków wielomianu W (x) stopnia trzeciego jest liczba 1, a suma pozostałych dwóch pierwiastków jest równa 0. Do wykresu tego wielomianu należy punkt A (3,1) . Wiedząc, że reszta z dzielenia wielomianu W (x) przez dwumian (x − 2) jest równa − 2 , wyznacz wzór tego wielomianu.

Ukryj Podobne zadania

Pierwiastki równania  3 2 x + (m − 1)x + (m − 12)x + 8 = 0 z niewiadomą x tworzą trzywyrazowy ciąg geometryczny. Oblicz m oraz sumę kwadratów tych pierwiastków.

Dane są liczby wymierne a ⁄= 0 i b takie, że równanie  3 2 ax + bx + cx+ d = 0 ma dwa pierwiastki wymierne. Wykaż, że c i d są liczbami wymiernymi.

Dany jest wielomian  3 W (x) = 2x + x + 1

  • Uzasadnij, że wielomian W (x ) nie ma dodatnich pierwiastków.
  • Uzasadnij, że wielomian W (x ) nie ma pierwiastków wymiernych.
  • Uzasadnij, że wielomian W (x ) ma co najmniej jeden pierwiastek.

Wiedząc, że wielomian  2 2 2 2 (x − bx ) − (ax + x ) + 5b + 5 jest wielomianem stopnia 3 oraz 1 jest jego pierwiastkiem wyznacz a i b .

Wykaż, że równanie  2 3 4 1 − 2x + 4x − 8x + 16x = 0 nie ma rozwiązań rzeczywistych.

Znajdź wszystkie wartości parametru k , dla których równanie (x − 2)(x 2 − 2kx + 1− k2) = 0 ma więcej niż jeden pierwiastek.

Ukryj Podobne zadania

Wielomian W jest określony wzorem  2 W (x ) = (x − 1)(x − mx + m − 1) dla każdego x ∈ R . Wyznacz wszystkie wartości parametru m , dla których wielomian W ma dokładnie jeden pierwiastek rzeczywisty.

Ukryj Podobne zadania

Wyznacz wszystkie wartości parametru m , dla których równanie

 2 2 (x − 4 )[x + (m − 3)x + m − m − 6] = 0

ma trzy różne rozwiązania rzeczywiste x1,x 2 oraz x 3 , spełniające warunek

x1 ⋅x 2 ⋅x3 > x21 + x22 + x23 − 5m − 5 1.
Ukryj Podobne zadania

Dane jest równanie

 2 (x − 2 )⋅[(m − 7)x + 2(m + 3 )x− (2m + 3)] = 0

z niewiadomą x i parametrem m ∈ R . Wyznacz wszystkie wartości parametru m , dla których to równanie ma trzy różne rozwiązania rzeczywiste tego samego znaku.

Wyznacz wszystkie wartości parametru m , dla których równanie

 2 2 (x − 3)[x + (m − 9)x + m − m + 16] = 0

ma trzy różne rozwiązania rzeczywiste x1,x 2 oraz x 3 , spełniające warunek

x1 ⋅x 2 ⋅x3 > x21 + x22 + x23 − 3m − 2 2.

Dane jest równanie

 2 (x − 6) ⋅[(m − 2)x − 4(m + 3)x + m + 1] = 0

z niewiadomą x i parametrem m ∈ R . Wyznacz wszystkie wartości parametru m , dla których to równanie ma trzy różne rozwiązania rzeczywiste tego samego znaku.

Liczby x1 = − 4 i x2 = 3 są pierwiastkami wielomianu  3 2 W (x) = x + 4x − 9x − 3 6 . Oblicz trzeci pierwiastek tego wielomianu.

Uzasadnij, że wielomian  5 4 3 2 120 W (x) = x + 4x + 3x + 2x + x+ 3 = 0 nie ma pierwiastków wymiernych.

Dla jakich wartości parametru m zbiór rozwiązań równania  4 2 x + mx − m = 0 jest dwuelementowy?

Wyznacz wartość parametru m , dla którego równanie

 3 2 x + (m − 2)x + (6 − 2m )x − 12 = 0

ma trzy pierwiastki x 1,x2,x3 spełniające warunki x3 = −x 1 oraz x2 = x1 − 1 .

Wykaż, że jeżeli pierwiastkiem wielomianu

W (x) = (kx − 3)(kx + 2)(kx− 12)(x + 8) + kx

jest liczba całkowita podzielna przez 5, to k nie jest liczbą całkowitą.

Ukryj Podobne zadania
Ukryj Podobne zadania

Wykaż, że równanie  8 2 4 x + x = 2(x − x − 1) ma tylko jedno rozwiązanie rzeczywiste x = − 1 .

Ukryj Podobne zadania
Strona 5 z 7
spinner