Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Tworząca stożka ma długość 4 i jest nachylona do płaszczyzny podstawy pod kątem 45∘ . Wysokość tego stożka jest równa
A)  √ -- 2 2 B) 16π C) 4√ 2- D) 8π

*Ukryj

Tworząca stożka ma długość 4 i jest nachylona do płaszczyzny podstawy pod kątem 60∘ . Wysokość tego stożka jest równa
A)  √ -- 2 2 B) 2π C) 2√ 3- D) 2

Tworząca stożka ma długość 4 i jest nachylona do płaszczyzny podstawy pod kątem 30∘ . Wysokość tego stożka jest równa
A) 2 B) 4π C)  √ -- 2 3 D) 2π

Dany jest stożek o objętości 18π , którego przekrojem osiowym jest trójkąt ABC (zobacz rysunek). Kąt CBA jest kątem nachylenia tworzącej l tego stożka do płaszczyzny jego podstawy. Tangens kąta CBA jest równy 2.


PIC


Wynika stąd, że wysokość h tego stożka jest równa
A) 12 B) 6 C) 4 D) 2

Przekrojem osiowym stożka o objętości  √ -- 9π 3 jest trójkąt równoboczny. Obwód tego trójkąta jest równy
A)  √ -- 3 3 B)  √ -- 9 3 C) 18 D) 6

Przekrój osiowy stożka jest trójkątem równobocznym o boku a . Jeżeli r oznacza promień podstawy stożka, h oznacza wysokość, to
A) r2 + a2 = h2 B)  √- r+ h = a+ -3a 2 C) r− h = a D)  √ - r+ h = 1+2-3a

*Ukryj

Przekrój osiowy stożka jest trójkątem równobocznym o wysokości h . Jeżeli r oznacza promień podstawy stożka, l oznacza długość jego tworzącej, to
A) r2 + l2 = h2 B)  √- r+ h = 1+--3l 2 C) r− h = l D)  √3 r+ h = l + 2-l

Tworząca stożka ma długość l , a promień jego podstawy jest równy r (zobacz rysunek).


PIC


Powierzchnia boczna tego stożka jest 2 razy większa od pola jego podstawy. Wówczas
A) r = 1 l 6 B) r = 1l 4 C)  1 r = 3l D)  1 r = 2l

*Ukryj

Tworząca stożka ma długość l , a promień jego podstawy jest równy r (zobacz rysunek).


PIC


Powierzchnia boczna tego stożka jest 3 razy większa od pola jego podstawy. Wówczas
A) r = 1 l 6 B) r = 1l 4 C)  1 r = 3l D)  1 r = 2l

Półkole o promieniu √ -- 3 cm zwinięto w stożek.


PIC


Wysokość tego stożka jest równa
A) √ - --3 cm 2 B) √ 3 cm C) 3 cm D) 1,5 cm

Pole powierzchni całkowitej pewnego stożka jest 3 razy większe od pola powierzchni pewnej kuli. Promień tej kuli jest równy 2 i jest taki sam jak promień podstawy tego stożka. Tworząca tego stożka ma długość równą
A) 12 B) 11 C) 24 D) 22

*Ukryj

Pole powierzchni całkowitej pewnego stożka jest 4 razy większe od pola powierzchni pewnej kuli. Promień tej kuli jest równy 3 i jest taki sam jak promień podstawy tego stożka. Tworząca tego stożka ma długość równą
A) 42 B) 45 C) 48 D) 52

Trójkąt prostokątny t obrócono względem dłuższej przyprostokątnej i otrzymano stożek o polu powierzchni bocznej 5 0π i kącie rozwarcia 60∘ . Obwód trójkąta t jest równy
A) 5√ 3-+ 15 B) 10√ 3-+ 15 C)  √ -- 10 3 + 30 D)  √ -- 5 3 + 30

Pole powierzchni całkowitej pewnego stożka jest 5 razy większe od pola powierzchni pewnej kuli. Promień tej kuli jest taki sam jak promień podstawy tego stożka. Tworząca tego stożka jest nachylona do podstawy pod kątem α takim, że
A)  1 cosα = 4 B)  1- co sα = 19 C) co sα = 15 D) cosα = 120

Kąt rozwarcia stożka ma miarę  ∘ 12 0 , a jego tworząca ma długość 10. Wówczas stosunek promienia podstawy stożka do jego wysokości jest równy
A) √ -- 3 B) √3- 5 C) 5 D)  √ - 5--3 3

*Ukryj

Kąt rozwarcia stożka ma miarę  ∘ 6 0 , a jego tworząca ma długość 8. Wówczas stosunek promienia podstawy stożka do jego wysokości jest równy
A) √ -- 3 B) √3- 4 C) √3- 3 D)  √ - 4--3 3

Kąt rozwarcia stożka ma miarę  ∘ 12 0 , a jego tworząca ma długość 12. Wówczas stosunek wysokości stożka do jego promienia podstawy jest równy
A) √ -- 3 B) √3- 3 C) √3- 6 D)  √ -- 2 3