Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Trójkąt/Dowolny/Udowodnij.../Długości odcinków

Wyszukiwanie zadań

Styczna w punkcie A do okręgu opisanego na trójkącie ABC przecina prostą BC w punkcie E . Niech D będzie punktem przecięcia dwusiecznej kąta A z prostą BC . Udowodnić, że AE = ED .

W trójkącie ABC , o bokach długości a,b ,c , połączono odcinkiem wierzchołek A z punktem E na boku BC takim, że BE = p i EC = q . Uzasadnij, że jeżeli d = AE , to a(d2 + pq) = b2p + c2q (twierdzenie Stewarta).

Kąty w trójkącie mają miary: α, β = 2α, γ = 4α . Wykaż, że długości boków a, b, c tego trójkąta spełniają równość: 1a − 1b − 1c = 0 .

Na boku BC trójkąta ABC wybrano punkt D tak, by |∡CAD | = |∡ABC | . Odcinek AE jest dwusieczną kąta DAB . Udowodnij, że |CE | = |AC | .


PIC


Na bokach AB i AC trójkąta ABC wybrano odpowiednio punkty K i L w ten sposób, że |BK | = |AL | . Punkt D jest środkiem odcinka BC . Przez punkty K i L poprowadzono proste równoległe do AD , które wyznaczyły na boku BC punkty E i F odpowiednio (zobacz rysunek). Wykaż, że jeżeli |BC | = 2|EF | , to |AB | = |AC | .


PIC


Punkty D i E są środkami boków CB i CA trójkąta ABC (zobacz rysunek). Wykaż, że odległość punktu B od prostej AD jest dwa razy większa od odległości punktu E od prostej AD .


PIC


W trójkącie ABC wysokość CD dzieli bok AB na odcinki AD i DB (rysunek), przy czym |AD | = 16 i |DB | = 8 . Wykaż, że symetralna boku AB dzieli bok AC w stosunku 3:1.


PIC


Ukryj Podobne zadania

W trójkącie KLM wysokość MN dzieli bok KL na odcinki KN i NL (rysunek), przy czym |KN | = 6 i |NL | = 10 . Wykaż, że symetralna boku KL dzieli bok ML w stosunku 1:4.


PIC


Wykaż, że jeżeli kąty wewnętrzne trójkąta spełniają warunek sin α = 2 cos γsin β to trójkąt ten jest równoramienny.

W trójkącie ostrokątnym ABC bok AB ma długość c , długość boku BC jest równa a oraz |∡ABC | = β . Dwusieczna kąta ABC przecina bok AC trójkąta w punkcie E . Wykaż, że długość odcinka BE jest równa 2ac⋅cos β --a+c-2 .

W trójkącie ABC kąt BAC jest dwa razy większy od kąta ABC . Wykaż, że prawdziwa jest równość |BC |2 − |AC |2 = |AB |⋅|AC | .

Dany jest trójkąt ABC , w którym |AC | > |BC | . Na bokach AC i BC tego trójkąta obrano odpowiednio takie punkty D i E , że AB i DE przecinają się w punkcie F (zobacz rysunek). Wykaż, że jeżeli |∡BAC | = |∡ABC |− 2|∡AF D | , to |CD | = |CE | .


PIC


Strona 2 z 2
spinner