Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

W trójkącie ABC dane są AB = 1 0 ,  ∘ ∡A = 30 i  ∘ ∡B = 4 5 . Oblicz długości pozostałych boków tego trójkąta i promień okręgu opisanego na tym trójkącie.

Jeden z boków trójkąta ma długość c , zaś kąty trójkąta przyległe do tego boku mają miary α i β . Znajdź promień okręgu wpisanego w ten trójkąt.

Dany jest trójkąt ABC , w którym sin-∡A- 17 sin∡B = 25 . Na boku AB leży punkt D taki, że |AD | = 1 2 , |DB | = 16 oraz |CD | = 17 . Oblicz długość promienia okręgu opisanego na trójkącie ABC .

Trójkąt ostrokątny, którego boki mają długości 17 i 16 ma pole równe 64. Oblicz promień okręgu opisanego na tym trójkącie.

Punkt H jest punktem wspólnym wysokości trójkąta ostrokątnego ABC wpisanego w okrąg o promieniu 12. Oblicz promień okręgu opisanego na trójkącie ABH .

W trójkącie ABC dane są kąt  ∘ |∡ACB | = 12 0 , |AC | = 6 i |BC | = 3 . Dwusieczna kąta ∡ACB przecina bok AB w punkcie D .

  • Oblicz długość odcinka CD .
  • Jaki jest związek miedzy długościami promieni: okręgu opisanego na trójkącie ADC i okręgu opisanego na trójkącie DBC ? Odpowiedź uzasadnij.

Na trójkącie o bokach długości √ --√ --√ --- 7, 8, 15 opisano okrąg. Oblicz promień tego okręgu.

W trójkącie ABC dane są długości boków: |AC | = 9 , |BC | = 7 . Wiadomo też, że miara kąta ∡ABC jest dwa razy większa od miary kąta ∡BAC . Oblicz stosunek długości promienia okręgu wpisanego w ten trójkąt do długości promienia okręgu opisanego na tym trójkącie.

Dany jest trójkąt o bokach długości 7,8,9.

  • Oblicz promień okręgu wpisanego w ten trójkąt.
  • Oblicz sumę sinusów kątów tego trójkąta.

Długości dwóch boków trójkąta są równe 1 i 4, a miara kąta zawartego między nimi wynosi 6 0∘ .

  • Oblicz pole tego trójkąta.
  • Oblicz promień okręgu opisanego na tym trójkącie.
  • Oblicz promień okręgu wpisanego w ten trójkąt.