Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Ciągi

Wyszukiwanie zadań

Ciąg arytmetyczny (an) jest określony dla każdej liczby naturalnej n ≥ 1 . Trzeci wyraz tego ciągu jest równy (− 1) , a suma piętnastu początkowych kolejnych wyrazów tego ciągu jest równa (− 165) . Oblicz różnicę tego ciągu.

Udowodnić, że w dowolnym trójkącie prostokątnym, w którym długości boków tworzą ciąg arytmetyczny, promień okręgu wpisanego w ten trójkąt jest równy różnicy ciągu długości jego boków.

Udowodnij, że jeżeli liczby a,b,c są kolejnymi wyrazami ciągu geometrycznego, to

(a − b + c)(a + b + c) = a2 + b2 + c2.

Ciąg (an ) dla n ≥ 1 jest ciągiem arytmetycznym oraz Sn = a1 + a2 + ⋅ ⋅⋅+ an dla n ≥ 1 . Wykaż, że jeżeli spełniony jest warunek  2 Sn+1= (n+12)- Sn n dla n ≥ 1 , to spełniony jest również warunek an+-1 2n+1- an = 2n−1 .

Ukryj Podobne zadania

Iloraz ciągu geometrycznego (an) jest równy  √ -- (1 + 5) . Uzasadnij, że dla każdej liczby naturalnej n ≥ 1 prawdziwy jest wzór an+ 2 = 2an+1 + 4an .

Ciąg (an) jest określony dla n ≥ 1 i spełnia warunki

( √2- |{ a1 = 2 2an+ 2 = an dla n ≥ 1 |( √ -- 2 2an +3 + an = 0 dla n ≥ 1

Oblicz granicę

 lim (a1 + a2 + ⋅ ⋅⋅+ an). n→ +∞

Wyznacz wszystkie wyrazy nieskończonego ciągu (an ) określonego wzorem  2 an = 2n−nn-+4- , n ≥ 1 , które są liczbami całkowitymi.

Liczby niezerowe a,b,c są wyrazami ciągu geometrycznego o numerach odpowiednio p ,r,s . Oblicz wartość wyrażenia

 r s p a-b-c-. asbpcr

Ciąg (x ,y,19) jest arytmetyczny, a ciąg (8,y,z,27) jest geometryczny. Oblicz x ,y oraz z .

Sinus pewnego kąta ostrego α , liczba 2 3 oraz cosinus tego samego kąta α tworzą w podanej kolejności ciąg geometryczny. Oblicz sumę sin α + cos α .

Średnia arytmetyczna n początkowych wyrazów ciągu (an ) jest równa 32 − 72n . Wyznacz wzór ogólny ciągu (an ) .

Ukryj Podobne zadania

Średnia arytmetyczna n początkowych wyrazów ciągu (an ) jest równa n 2 + n . Wyznacz wzór ogólny ciągu (an) .

Ciąg (an ) jest geometryczny o wyrazie pierwszym równym a1 ⁄= 0 i ilorazie q ∈ R ∖{ 0,1} , Oblicz sumę S 2019 = a 1 + 2a 2 + 3a 3 + ...+ 2019a2019 .

Różnica ciągu arytmetycznego an = log3 xn jest równa − 1 + log 32 . Oblicz a1 jeżeli wiadomo, że

x 1 + x 2 + ⋅⋅ ⋅+ x10 = 910 − 610.

Iloraz ciągu geometrycznego (an) , gdzie n ≥ 1 jest równy q ⁄= 1 , a suma 10 początkowych wyrazów tego ciągu spełnia warunek S10 = 5−1a−q11 . Oblicz pierwszy wyraz tego ciągu.

Ukryj Podobne zadania

Dany jest ciąg (an) określony wzorem rekurencyjnym

{ a1 = − 2 a = n ⋅an + 4 dla n ≥ 1 n+1

Oblicz sumę czterech początkowych wyrazów ciągu (an) .

Oblicz pierwszy wyraz i iloraz ciągu geometrycznego (an) , wiedząc, że a2 = 2 8 i a5 = 312 . Oblicz sumę dziesięciu początkowych wyrazów tego ciągu.

Strona 18 z 25
spinner